Scrollr

Experience Tumblr like never before

Women In Science - Blog Posts

1 year ago
A lithograph of Girl Scout astronauts. Portraits of 33 women of various races and ethnicities curve around part of Earth (bottom left). On Earth are embossed words “doctors, educators, engineers, pilots, scientists.” At top left is the Moon, and at top right is the International Space Station. From left to right, bottom to top, the astronauts are Serena M. Auñón-Chancellor, Kayla Barron, Yvonne D. Cagle, Laurel B. Clark, Eileen M. Collins, Nancy J. Currie-Gregg, N. Jan Davis, Anna L. Fisher, Susan J. Helms, Joan E. Higginbotham, Kathryn P. Hire, Tamara E. Jernigan, Susan L. Kilrain, Christina H. Koch, Wendy B. Lawrence, Sandra H. Magnus, Nicole Aunapu Mann, Megan McArthur, Jessica U. Meir, Pamela A. Melroy, Dorothy M. Metcalf-Lindenburger, Barbara R. Morgan, Lisa M. Nowak, Loral O’Hara, Kathleen Rubins, M. Rhea Seddon, Heidemarie M. Stefanyshyn-Piper, Kathryn D. Sullivan, Kathryn C. Thornton, Janice E. Voss, Jessica Watkins, Mary Ellen Weber, and Sunita L. Williams.

It’s Girl Scout Day! March 12, 2024, is the 112th birthday of Girl Scouts in the United States, and to celebrate, we’re sharing a lithograph of the Girl Scout alumnae who became NASA astronauts.

Girl Scouts learn to work together, build community, embrace adventurousness and curiosity, and develop leadership skills—all of which come in handy as an astronaut. For example, former Scouts Christina Koch and Jessica Meir worked together to make history on Oct. 18, 2019, when they performed the first all-woman spacewalk.

Pam Melroy is one of only two women to command a space shuttle and became NASA’s deputy administrator on June 21, 2021.

Nicole Mann was the first Indigenous woman from NASA to go to space when she launched to the International Space Station on Oct. 5, 2022. Currently, Loral O’Hara is aboard the space station, conducting science experiments and research.

Participating in thoughtful activities in leadership and STEM in Girl Scouts has empowered and inspired generations of girls to explore space, and we can’t wait to meet the future generations who will venture to the Moon and beyond.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago
Who Is The First Woman? Meet Our New Graphic Novel Hero!

Who is the First Woman? Meet our new graphic novel hero!

Artemis is the first step in the next era of human exploration. This time when we go to the Moon, we're staying, to study and learn more than ever before. We’ll test new technologies and prepare for our next giant leap – sending astronauts to Mars.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Artemis missions will achieve many historic feats, like landing the first woman and first person of color on the Moon.

With today’s release of our graphic novel First Woman: NASA’s Promise for Humanity you don’t have to wait to join us on an inspiring adventure in space.

Meet Commander Callie Rodriguez, the first woman to explore the Moon – at least in the comic book universe.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

In Issue No. 1: Dream to Reality, Callie, her robot sidekick RT, and a team of other astronauts are living and working on the Moon in the not-too-distant future. Like any good, inquisitive robot, RT asks Callie how he came to be – not just on the Moon after a harrowing experience stowed in the Orion capsule – but about their origin story, if you will.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

From her childhood aspirations of space travel to being selected as an astronaut candidate, Callie takes us on her trailblazing journey to the Moon.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

As they venture out to check on a problem at a lunar crater, Callie shares with RT and the crew that she was captivated by space as a kid, and how time in her father’s autobody shop piqued her interest in building things and going places.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Callie learned at a young age that knowledge is gained through both success and failure in the classroom and on the field.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Through disappointment, setbacks, and personal tragedy, Callie pursues her passions and eventually achieves her lifelong dream of becoming an astronaut – a road inspired by the real lives of many NASA astronauts living and working in space today.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

So what's up with that lunar crater?

Did Callie pass her math class?

And where did RT come from?

Be a part of the adventure: read (or listen to) the full First Woman story and immerse yourself in a digital experience through our first-ever extended reality-enabled graphic novel.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

The Path to High Adventure Begins With Girl Scouting!

image

Former NASA astronaut and Girl Scout alumna Jan Davis eating Girl Scout Cookies inside the shuttle Endeavour on Sept. 12, 1992. Image credit: NASA

Leadership, service, being prepared and doing your best – these qualities are exemplified by our astronauts, but are also shared by the Girl Scouts! Our astronaut corps has many scout alumnae, and over the years they’ve been breaking barriers and making names for themselves at NASA.

March 12, 2021 marks the 109th birthday of Girl Scouts in the United States, which has been inspiring generations of girls through leadership and STEM (science, technology, engineering and mathematics) activities to empower the explorers of today and tomorrow. To celebrate, we’re highlighting some of our Girl Scout alumnae over the years!

image

NASA astronaut and Girl Scout alumna Sunita Williams, who served as an International Space Station commander and spent 322 days in space during two spaceflight expeditions.

Former Scouts have served as crew members on numerous spaceflight missions.

image

From left: Susan Helms, the first female International Space Station crew member; Eileen Collins, the first woman to pilot and command a space shuttle; and Dr. Kathy Sullivan, the first American woman to perform a spacewalk.

Former Girl Scouts flew on more than one-third of the space shuttle missions and were pioneering forces as women began making their mark on human spaceflight. The first female crew member to serve on the International Space Station, the first to pilot and command a space shuttle and the first American woman to spacewalk were all Scout alumnae. 

They continue to break records, such as the first three all-woman spacewalks... 

image

Girl Scout alumnae and NASA astronauts Christina Koch and Jessica Meir made history when they conducted the first ever all-woman spacewalk on Oct.18, 2019. They went on to complete two more spacewalks, successfully completing their task of upgrading the space station’s battery charge/discharge unit. Christina and Jessica’s historic spacewalk was a testament to the growing number of women (and Girl Scouts) joining our astronaut corps; it is a milestone worth celebrating as we look forward to putting the first woman on the Moon with our Artemis Program! 

....and the longest spaceflight ever by a woman!

image

NASA astronaut Christina Koch smiles for a selfie while completing tasks during a spacewalk outside the International Space Station.

Koch went on to seal her name in the record books by surpassing Peggy Whitson’s record for the longest single spaceflight in history by a woman!

Understanding how the human body adjusts to things like weightlessness, radiation and bone-density loss is crucial as we look forward to embarking on long-duration spaceflights to the Moon and Mars. Thanks to former astronaut Scott Kelly’s Year in Space mission, we’ve been able to observe these changes on a biological male. Now, thanks to Christina’s mission, we are able to observe these changes on a biological female. 

Girl Scout alumnae will also help lead human exploration farther than ever before as members of our Artemis generation!

image

 From left: NASA astronauts Jessica Watkins, Loral O’Hara and Kayla Barron

On January 10, 2020 we welcomed 11 new astronauts to our ranks – including three Girl Scout alumnae! As part of the first-ever class of astronauts under our Artemis lunar exploration program, Kayla Barron, Jessica Watkins and Loral O’Hara are now qualified for assignments including long-duration missions to the International Space Station, the Moon and Mars.

They took a moment after graduation to share inspiration and insight for current and future Scouts!

Q: A question from the Girl Scouts: What inspires you?

A: “Being a part of an awesome team has always been what inspires me. Whether it’s your Girl Scout troop, a sports team, your class – I think for me always the people around me who push me to succeed and support me when I make mistakes and help me become my best self is what inspires me to show up and do my best.” - NASA astronaut Kayla Barron 

Q: How has being a Girl Scout helped you in becoming an astronaut?

A: “Being in the Girl Scouts when I was younger was really cool because, well, first it was just a group of my friends who got to do a lot of different things together. But it really gave us the opportunity to be exposed to a lot of different areas. Like we’d get to go camping. We’d get to ride horses and learn all of these different skills, and so that variety of skill set I think is very applicable to being an astronaut.” - NASA astronaut Loral O’Hara 

Q: What would your advice be for the next generation of Girl Scout astronauts?

A: “My advice would be to find something that you’re passionate about. Ideally something in the STEM fields: Science, Technology, Engineering or Mathematics, and to pursue that thing that you’re interested in. Pursue that passion, whatever it is. And don’t give up on your dreams, and continue to follow them until you arrive where you want to be.” - NASA astronaut Jessica Watkins 

To all the Girl Scouts out there, keep reaching for the stars because the sky is no longer the limit!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Happy International Women’s Day!

Without the women of NASA, space exploration would be just a dream.

This International Women’s Day join us in celebrating the women whose grit, ingenuity and talent drives us forward in our mission to boldly expand frontiers in air and space. Thank you for pushing boundaries, serving as role models and shaping space, science and discovery every day!

Happy International Women’s Day!
Happy International Women’s Day!
Happy International Women’s Day!
Happy International Women’s Day!
Happy International Women’s Day!
Happy International Women’s Day!
Happy International Women’s Day!
Happy International Women’s Day!
Happy International Women’s Day!

The women at NASA are making history everyday! Keep up with their work and learn more about their stories, HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
NASA Spotlight: Carbon Cycle And Ecosystems Earth Scientist Erika Podest 

NASA Spotlight: Carbon Cycle and Ecosystems Earth Scientist Erika Podest 

Dr. Erika Podest is a scientist with the Carbon Cycle and Ecosystems Group in our Jet Propulsion Laboratory’s Earth Science Division and Visiting Associate Researcher in the Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) at UCLA. Her research entails using satellite images to study Earth’s ecosystems specifically related to wetlands and boreal forests and how they are being affected by climate change. 

Erika took time from studying our home planet to answer questions about her life and career! Get to know our Earth Scientist: 

What inspires/motivates you?

I am inspired by the beauty of nature, its perfection and by the peace it brings me. My motivation is to make a positive impact on our planet by better understanding it and caring for it.

What first sparked your interest in Earth science?

I was born and raised in Panama, which is a country with an exuberant nature. Since I can remember, I was always surrounded by nature because my father was an adventurer who loved the outdoors and always took me with him to go exploring or simply to enjoy a nice relaxing day outside. This led me to develop a deep sense of appreciation, respect, and curiosity for nature, which sparked my interest to learn about it and pursue a career in Earth Science.

What got you interested in the study of Earth from space?

image

Early in my college years I was training for my private pilot’s license and during my solo flights I would take pictures of features on the surface from the plane. I was always amazed at the details the pictures showed of the landscape that were not obvious from the ground. This was the first step towards discovering that there was a field for studying Earth from above, called remote sensing and consequently my Masters and Ph.D. were focused in this field.

What technology, discovery, or policy do you think has the most potential to decrease humans’ environmental impact (e.g. wind turbines, carbon taxes, clean meat)?

I don’t think it is a matter of any one technology, discovery or policy. It is a combination of everything. Having an impact on climate change involves every level and direction, from the bottom up at the individual, grassroots and community level to the top down at the policy level. As individuals, I think it is important to educate ourselves about climate change (I suggest climate.nasa.gov). We all have the power to make a positive change by speaking up and making informed decisions about our consumptive habits.

What’s a fact about the role of wetlands and boreal forests in the global ecosystem that you think would surprise people?

image

Wetlands provide a vital role in carbon storage. Even though they cover about 5-8% of the Earth’s land surface, studies indicate that they contain a disproportionate amount of our planet’s total soil carbon, about 20-30%. In addition, they are like the arteries and veins of the landscape, acting as water sources and purifiers and helping in flood control. They also protect our shores and harbor large amounts of biodiversity.

Boreal forests are found in the uppermost northern hemisphere (Alaska, most of Canada, Russia, Scandinavia and northern Asia) and account for about 30% of the world’s forest cover. These forests lock up enormous amounts of carbon and help slow the increasing buildup of carbon dioxide in our atmosphere. In their peak growth phase during the northern spring and summer, the worldwide levels of carbon dioxide fall and the worldwide levels of oxygen rise. 

Can you describe a typical day on a research trip?

image

It depends on the research trip. For example, one of my more recent ones was to the Peruvian Amazon where we went upriver on a boat for three weeks on a major tributary of the Amazon River called the Ucuyali River. I was with a team of eight researchers and we were studying the wetland ecosystems of the Pacaya-Samiria Natural Reserve, which entailed making vegetation measurements and assessing inundation extent to validate our scientific findings from satellite observations. We camped for most of the trip and a typical day entailed waking up at around 5:00 am with a symphony of sounds that emerged from the forest, including monkeys. We had breakfast and set off from base camp into the forest (~1 hour walk) to work an 8-9 hour day with a short lunch break (we had packed lunches) at noon. At the end of the day I’d be drenched in sweat, sunscreen, insect repellent, and dust and I’d bathe with water from the river, which was as brown as a milk chocolate bar. It was the most refreshing and cleansing feeling! The day would close with dinner followed with a discussion of the measurements to be collected the following day. Lights were out by 7:30 pm (which seemed like midnight) and I’d re-emerge myself into my tent in the dark tropical night surrounded by the sounds of the forest, until the next morning.

What are some of the most important lessons you’ve learned in life?

That it is important to be patient, humble and thankful.

Do you have any secret skills, talents, or hobbies?

Great question! I do not have any secrete skills or talents but I do have a couple of hobbies. I play the piano, though I am still a novice. I love windsurfing. It is an amazing feeling to skim over the water at fast speeds (I’m also an adrenaline junkie). Finally, I am fascinated by magic card tricks and whenever I have some free time I like to learn a new trick.

What do you enjoy the most about your job?

I enjoy constantly learning about our natural world and how it works. I also really enjoy communicating my work to students and to the general public. I find it especially rewarding when I can educate people and motivate students to consider careers in science.

Erika, thank you for your time and everything you do to keep our home planet safe!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What is your advice to someone who wants to follow the same steps you take?


Tags
1 year ago

We were extremely fortunate to have Jocelyn Bell Burnell as a virtual guest in a women in science class! She was a pleasure to listen to and continues to be an inspiration.

In this multiwavelength image, the central object resembles a semi-transparent, spinning toy top in shades of purple and magenta against a black background. The top-like structure appears to be slightly falling toward the right side of the image. At its center is a bright spot. This is the pulsar that powers the nebula. A stream of material is spewing forth from the pulsar in a downward direction, constituting what would be the part of a top that touches a surface while it is spinning. Wispy purple light accents regions surrounding the object. This image combines data from NASA's Chandra, Hubble, and Spitzer telescopes. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Navigating Deep Space by Starlight

On August 6, 1967, astrophysicist Jocelyn Bell Burnell noticed a blip in her radio telescope data. And then another. Eventually, Bell Burnell figured out that these blips, or pulses, were not from people or machines.

This photograph shows astrophysicist Jocelyn Bell Burnell smiling into a camera. She is wearing glasses, a pink collared shirt, and a black cardigan. She is holding a yellow pencil above a piece of paper with a red line across it. There is a tan lampshade and several books in the background. The image is watermarked “Copyright: Robin Scagell/Galaxy Picture Library.”

The blips were constant. There was something in space that was pulsing in a regular pattern, and Bell Burnell figured out that it was a pulsar: a rapidly spinning neutron star emitting beams of light. Neutron stars are superdense objects created when a massive star dies. Not only are they dense, but neutron stars can also spin really fast! Every star we observe spins, and due to a property called angular momentum, as a collapsing star gets smaller and denser, it spins faster. It’s like how ice skaters spin faster as they bring their arms closer to their bodies and make the space that they take up smaller.

This animation depicts a distant pulsar blinking amidst a dark sky speckled with colorful stars and other objects. The pulsar is at the center of the image, glowing purple, varying in brightness and intensity in a pulsating pattern. As the camera pulls back, we see more surrounding objects, but the pulsar continues to blink. The image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center

The pulses of light coming from these whirling stars are like the beacons spinning at the tops of lighthouses that help sailors safely approach the shore. As the pulsar spins, beams of radio waves (and other types of light) are swept out into the universe with each turn. The light appears and disappears from our view each time the star rotates.

A small neutron star spins at the center of this animation. Two purple beams of light sweep around the star-filled sky, emanating from two spots on the surface of the neutron star, and one beam crosses the viewer’s line of sight with a bright flash. The image is watermarked “Artist’s concept.” Credit: NASA's Goddard Space Flight Center.

After decades of studying pulsars, astronomers wondered—could they serve as cosmic beacons to help future space explorers navigate the universe? To see if it could work, scientists needed to do some testing!

First, it was important to gather more data. NASA’s NICER, or Neutron star Interior Composition Explorer, is a telescope that was installed aboard the International Space Station in 2017. Its goal is to find out things about neutron stars like their sizes and densities, using an array of 56 special X-ray concentrators and sensitive detectors to capture and measure pulsars’ light.

This time-lapse of our Neutron star Interior Composition Explorer (NICER) shows how it scans the skies to study pulsars and other X-ray sources from its perch aboard the International Space Station. NICER is near the center of the image, a white box mounted on a platform with a shiny panel on one side and dozens of cylindrical mirrors on the opposite side. Around it are other silver and white instruments and scaffolding. NICER swivels and pans to track objects, and some other objects nearby move as well. The station’s giant solar panels twist and turn in the background. Movement in the sequence, which represents a little more than one 90-minute orbit, is sped up by 100 times. Credit: NASA.

But how can we use these X-ray pulses as navigational tools? Enter SEXTANT, or Station Explorer for X-ray Timing and Navigation Technology. If NICER was your phone, SEXTANT would be like an app on it.  

During the first few years of NICER’s observations, SEXTANT created an on-board navigation system using NICER’s pulsar data. It worked by measuring the consistent timing between each pulsar’s pulses to map a set of cosmic beacons.

This photo shows the NICER payload on the International Space Station. Against a black background, tall rectangular solar panels that appear as a golden mesh rise from the bottom of the photo, passing through its middle area. In front of that are a variety of gray and white shapes that make up instruments and the structure of the space station near NICER. Standing above from them, attached to a silver pole, is the rectangular box of the NICER telescope, which is pointing its concentrators up and to the right. Credit: NASA.

When calculating position or location, extremely accurate timekeeping is essential. We usually rely on atomic clocks, which use the predictable fluctuations of atoms to tick away the seconds. These atomic clocks can be located on the ground or in space, like the ones on GPS satellites. However, our GPS system only works on or close to Earth, and onboard atomic clocks can be expensive and heavy. Using pulsar observations instead could give us free and reliable “clocks” for navigation. During its experiment, SEXTANT was able to successfully determine the space station’s orbital position!

A photo of the International Space Station as seen from above. The left and right sides of the image are framed by the station's long, rectangular solar panels, with a complex array of modules and hardware in the middle. The background is taken up fully by the surface of the Earth; lakes, snow-capped mountains, and a large body of water are faintly visible beneath white clouds. Credit: NASA

We can calculate distances using the time taken for a signal to travel between two objects to determine a spacecraft’s approximate location relative to those objects. However, we would need to observe more pulsars to pinpoint a more exact location of a spacecraft. As SEXTANT gathered signals from multiple pulsars, it could more accurately derive its position in space.

This animation shows how triangulating the distances to multiple pulsars could help future space explorers determine their location. In the first sequence, the location of a spaceship is shown in a blue circle in the center of the image against a dark space background. Three pulsars, shown as spinning beams of light, appear around the location. They are circled in green and then connected with dotted lines. Text on screen reads “NICER data are also used in SEXTANT, an on-board demonstration of pulsar-based navigation.” The view switches to the inside of a futuristic spacecraft, looking through the windshield at the pulsars. An illuminated control panel glows in blues and purples. On-screen text reads “This GPS-like technology may revolutionize deep space navigation through the solar system and beyond.” Credit: NASA’s Johnson Space Center

So, imagine you are an astronaut on a lengthy journey to the outer solar system. You could use the technology developed by SEXTANT to help plot your course. Since pulsars are reliable and consistent in their spins, you wouldn’t need Wi-Fi or cell service to figure out where you were in relation to your destination. The pulsar-based navigation data could even help you figure out your ETA!

NASA’s Space Launch System (SLS) rocket carrying the Orion spacecraft launched on the Artemis I flight test. With Artemis I, NASA sets the stage for human exploration into deep space, where astronauts will build and begin testing the systems near the Moon needed for lunar surface missions and exploration to other destinations farther from Earth. This image shows a SLS rocket against a dark, evening sky and clouds of smoke coming out from the launch pad. This is all reflected on the water in the foreground of the photo. Credit: NASA/Bill Ingalls

None of these missions or experiments would be possible without Jocelyn Bell Burnell’s keen eye for an odd spot in her radio data decades ago, which set the stage for the idea to use spinning neutron stars as a celestial GPS. Her contribution to the field of astrophysics laid the groundwork for research benefitting the people of the future, who yearn to sail amongst the stars.  

Keep up with the latest NICER news by following NASA Universe on X and Facebook and check out the mission’s website. For more on space navigation, follow @NASASCaN on X or visit NASA’s Space Communications and Navigation website.  

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Museum Exhibit Reveals the NASA Langley Human Computers from "Hidden Figures"

Sam McDonald NASA Langley Research Center

Museum Exhibit Reveals The NASA Langley Human Computers From "Hidden Figures"

A new display at the Hampton History Museum offers another view of African-American women whose mathematical skills helped the nation’s early space program soar.

“When the Computer Wore a Skirt: NASA’s Human Computers” opens to the public Saturday, Jan. 21, and focuses on three women — Dorothy Vaughan, Mary Jackson and Katherine Johnson — who were illuminated in Margot Lee Shetterly’s book “Hidden Figures” and the major motion picture of the same name. Located in the museum's 20th century gallery, it was created with support from the Hampton Convention and Visitor Bureau and assistance from NASA's Langley Research Center.

“Langley’s West Computers were helping America dominate aeronautics, space research, and computer technology, carving out a place for themselves as female mathematicians who were also black, black mathematicians who were also female,” Shetterly wrote.

The modestly sized exhibit is comprised of four panels with photos and text along with one display case containing artifacts, including a 1957 model Friden mechanical calculator. That piece of equipment represented state-of-the-art technology when then original human computers were crunching numbers. A three-minute video profiling Johnson —a Presidential Medal of Freedom winner — is also part of the exhibit.

Museum Exhibit Reveals The NASA Langley Human Computers From "Hidden Figures"

A display case at left contains a 1957 Friden STW-10 mechanical calculator, the type used by NASA human computers including Katherine Johnson. "If you were doing complicated computations during that time, this is what you used," said Hampton History Museum Curator Allen Hoilman. The machine weighs 40 pounds.

Credits: NASA/David C. Bowman

Museum curator Allen Hoilman said his favorite artifact is a May 5, 1958 memo from Associate Director Floyd Thompson dissolving the West Area Computers Unit and reassigning its staff members to other jobs around the center.

“It meant that the segregated work environment was coming to an end,” Hoilman said. “That’s why this is a significant document. It’s one of the bookends.”

That document, along with several others, was loaned to the museum by Ann Vaughan Hammond, daughter of Dorothy Vaughan. Hoilman said family members of other human computers have been contacted about contributing artifacts as well.

Ann Vaughan Hammond worked hard to find meaningful items for the display. “She really had to do some digging through the family papers,” Hoilman said, explaining that the women who worked as human computers were typically humble about their contributions. They didn’t save many mementos.

“They never would have guessed they would be movie stars,” Hoilman said.

For more information on Katherine Johnson, click here.

Credits:

Sam McDonald NASA Langley Research Center


Tags
6 years ago

5 Facts About Earth's Radiation Donuts 🍩

Did you know that our planet is surrounded by giant, donut-shaped clouds of radiation?

image

Here’s what you need to know.

1. The radiation belts are a side effect of Earth’s magnetic field

image

The Van Allen radiation belts exist because fast-moving charged particles get trapped inside Earth’s natural magnetic field, forming two concentric donut-shaped clouds of radiation. Other planets with global magnetic fields, like Jupiter, also have radiation belts.

2. The radiation belts were one of our first Space Age discoveries

image

Earth’s radiation belts were first identified in 1958 by Explorer 1, the first U.S. satellite. The inner belt, composed predominantly of protons, and the outer belt, mostly electrons, would come to be named the Van Allen Belts, after James Van Allen, the scientist who led the charge designing the instruments and studying the radiation data from Explorer 1.

3. The Van Allen Probes have spent six years exploring the radiation belts

image

In 2012, we launched the twin Van Allen Probes to study the radiation belts. Over the past six years, these spacecraft have orbited in and out of the belts, providing brand-new data about how the radiation belts shift and change in response to solar activity and other factors.

4. Surprise! Sometimes there are three radiation belts

image

Shortly after launch, the Van Allen Probes detected a previously-unknown third radiation belt, created by a bout of strong solar activity. All the extra energy directed towards Earth meant that some particles trapped in our planet’s magnetic field were swept out into the usually relatively empty region between the two Van Allen Belts, creating an additional radiation belt.

5. Swan song for the Van Allen Probes

image

Originally designed for a two-year mission, the Van Allen Probes have spent more than six years collecting data in the harsh radiation environment of the Van Allen Belts. In spring 2019, we’re changing their orbit to bring the perigee — the part of the orbit where the spacecraft are closest to Earth — about 190 miles lower. This ensures that the spacecraft will eventually burn up in Earth’s atmosphere, instead of orbiting forever and becoming space junk.

Because the Van Allen Probes have proven to be so hardy, they’ll continue collecting data throughout the final months of the mission until they run out of fuel. As they skim through the outer reaches of Earth’s atmosphere, scientists and engineers will also learn more about how atmospheric oxygen can degrade satellite measurements — information that can help build better satellites in the future.

Keep up with the latest on the mission on Twitter, Facebook or nasa.gov/vanallenprobes.


Tags
8 years ago
Meet The All-female Team Of Coders That Brought Us Apollo 11.
Meet The All-female Team Of Coders That Brought Us Apollo 11.

Meet the all-female team of coders that brought us Apollo 11.

In 1969, the world watched as Neil Armstrong marked his historic achievement with the words, “That’s one small step for man, one giant leap for mankind.” His now-famous transmission was heard around the globe thanks to NASA’s Deep Space Network, which made communication from outer space possible.

That network was built by a woman named Susan Finley. She was part of an all-female team of coders whose work was integral to the success of the Apollo 11 mission. Science writer Nathalia Holt brings us their stories in her book, Rise of the Rocket Girls: The Women Who Propelled Us from Missiles to the Moon to Mars.

Listen to their story here.

[Images via NASA]


Tags
10 years ago
Thank You Google For The Great Doodle Honoring Annie Jump Cannon Today!

Thank you Google for the great Doodle honoring Annie Jump Cannon today!

Annie Jump Cannon (December 11, 1863 - April 13, 1941) was an American astronomer whose cataloging work was instrumental in the development of contemporary stellar classification. With Edward C. Pickering, she is credited with the creation of the Harvard Classification Scheme, which was the first serious attempt to organize and classify stars based on their temperatures. She was nearly deaf throughout her career.

(from Wikipedia)


Tags
2 years ago

What an amazing woman, and a personal heroine for me. She's part of what made me fall in love with radiation and want to study it. 💗

"Nothing In Life Is To Be Feared, It Is Only To Be Understood. Now Is The Time To Understand More, So
"Nothing In Life Is To Be Feared, It Is Only To Be Understood. Now Is The Time To Understand More, So
"Nothing In Life Is To Be Feared, It Is Only To Be Understood. Now Is The Time To Understand More, So
"Nothing In Life Is To Be Feared, It Is Only To Be Understood. Now Is The Time To Understand More, So
"Nothing In Life Is To Be Feared, It Is Only To Be Understood. Now Is The Time To Understand More, So
"Nothing In Life Is To Be Feared, It Is Only To Be Understood. Now Is The Time To Understand More, So
"Nothing In Life Is To Be Feared, It Is Only To Be Understood. Now Is The Time To Understand More, So
"Nothing In Life Is To Be Feared, It Is Only To Be Understood. Now Is The Time To Understand More, So

"Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less".

"Life is not easy for any of us. But what of that? We must have perseverance and above all confidence in ourselves. We must believe that we are gifted for something and that this thing must be attained".

"I am one of those who think like Nobel, that humanity will draw more good than evil from new discoveries".

"If I had not been taught chemical analysis by prof. Milicer and dr. Kossakowski in Warsaw, I would not have isolated radium".

"I am among those who think that science has great beauty. A scientist in his laboratory is not only a technician: he is also a child placed before natural phenomena which impress him like a fairy tale".

"Humanity also needs dreamers, for whom the disinterested development of an enterprise is so captivating that it becomes impossible for them to devote their care to their own material profit".

"You cannot hope to build a better world without improving the individuals. To that end each of us must work for his own improvement, and at the same time share a general responsibility for all humanity, our particular duty being to aid those to whom we think we can be most useful".

"I was taught that the way of progress was neither swift nor easy".

— Maria Skłodowska Curie


Tags
5 years ago

I just had a guy spend ten minutes explaining the Hubble telescope to me and why it was so groundbreaking, without letting me get a word in edgewise.

I’m an astrophysics major.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags