Who Is The First Woman? Meet Our New Graphic Novel Hero!

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Who is the First Woman? Meet our new graphic novel hero!

Artemis is the first step in the next era of human exploration. This time when we go to the Moon, we're staying, to study and learn more than ever before. We’ll test new technologies and prepare for our next giant leap – sending astronauts to Mars.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Artemis missions will achieve many historic feats, like landing the first woman and first person of color on the Moon.

With today’s release of our graphic novel First Woman: NASA’s Promise for Humanity you don’t have to wait to join us on an inspiring adventure in space.

Meet Commander Callie Rodriguez, the first woman to explore the Moon – at least in the comic book universe.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

In Issue No. 1: Dream to Reality, Callie, her robot sidekick RT, and a team of other astronauts are living and working on the Moon in the not-too-distant future. Like any good, inquisitive robot, RT asks Callie how he came to be – not just on the Moon after a harrowing experience stowed in the Orion capsule – but about their origin story, if you will.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

From her childhood aspirations of space travel to being selected as an astronaut candidate, Callie takes us on her trailblazing journey to the Moon.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

As they venture out to check on a problem at a lunar crater, Callie shares with RT and the crew that she was captivated by space as a kid, and how time in her father’s autobody shop piqued her interest in building things and going places.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Callie learned at a young age that knowledge is gained through both success and failure in the classroom and on the field.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Through disappointment, setbacks, and personal tragedy, Callie pursues her passions and eventually achieves her lifelong dream of becoming an astronaut – a road inspired by the real lives of many NASA astronauts living and working in space today.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

So what's up with that lunar crater?

Did Callie pass her math class?

And where did RT come from?

Be a part of the adventure: read (or listen to) the full First Woman story and immerse yourself in a digital experience through our first-ever extended reality-enabled graphic novel.

Make sure to follow us on Tumblr for your regular dose of space!

More Posts from Nasa and Others

9 years ago

What Are the Bright Spots on Ceres?

image

Dwarf planet Ceres has more than 130 bright areas, and most of them are associated with impact craters. Now, Ceres has revealed some of its well-kept secrets in two new studies in the journal Nature, thanks to data from our Dawn spacecraft.

Two studies have been looking into the mystery behind these bright areas. One study identifies this bright material as a kind of salt, while the other study suggests the detection of ammonia-rich clays. 

Study authors write that the bright material is consistent with a type of magnesium sulfate called hexahydrite. A different type of magnesium sulfate is familiar on Earth as Epsom salt.

image

Researchers, using images from Dawn’s framing camera, suggest that these salt-rich areas were left behind when water-ice sublimated in the past. Impacts from asteroids would have unearthed the mixture of ice and salt.

An image of Occator Crater (below) shows the brightest material on Ceres. Occator itself is 60 miles in diameter, and its central pit, covered by this bright material, measures about 6 miles wide. With its sharp rim and walls, it appears to be among the youngest features on the dwarf planet.

image

In the second nature study, members of the Dawn science team examined the composition of Ceres and found evidence for ammonia-rich clays. Why is this important?

Well, ammonia ice by itself would evaporate on Ceres today, because it is too warm. However, ammonia molecules could be stable if present in combination with other minerals. This raises the possibility that Ceres did not originate in the main asteroid belt between Mars and Jupiter, where it currently resides. But instead, might have formed in the outer solar system! Another idea is that Ceres formed close to its present position, incorporating materials that drifted in from the outer solar system, near the orbit of Neptune, where nitrogen ices are thermally stable.

image

As of this week, our Dawn spacecraft has reached its final orbital altitude at Ceres (about 240 miles from the surface). In mid-December, it will begin taking observations from this orbit, so be sure to check back for details!

ake sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Five Facts About the Kepler Space Telescope That Will Blow You Away!

Five Facts About The Kepler Space Telescope That Will Blow You Away!

Ten years ago, on March 6, 2009, a rocket lifted off a launch pad at Cape Canaveral Air Force Station in Florida. It carried a passenger that would revolutionize our understanding of our place in the cosmos--NASA’s first planet hunter, the Kepler space telescope. The spacecraft spent more than nine years in orbit around the Sun, collecting an unprecedented dataset for science that revealed our galaxy is teeming with planets. It found planets that are in some ways similar to Earth, raising the prospects for life elsewhere in the cosmos, and stunned the world with many other first-of-a-kind discoveries. Here are five facts about the Kepler space telescope that will blow you away:

Kepler observed more than a half million stars looking for planets beyond our solar system.

Five Facts About The Kepler Space Telescope That Will Blow You Away!

It discovered more than 2,600 new worlds…

Five Facts About The Kepler Space Telescope That Will Blow You Away!

…many of which could be promising places for life.

Five Facts About The Kepler Space Telescope That Will Blow You Away!

Kepler’s survey revealed there are more planets than stars in our galaxy.

Five Facts About The Kepler Space Telescope That Will Blow You Away!

The spacecraft is now drifting around the Sun more than 94 million miles away from Earth in a safe orbit.

Five Facts About The Kepler Space Telescope That Will Blow You Away!

NASA retired the Kepler spacecraft in 2018. But to this day, researchers continue to mine its archive of data, uncovering new worlds.

*All images are artist illustrations. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

What’s Up - March 2018

What’s Up For March?

Several Planets and the Zodiacal Light!

image

This month, at sunset, catch elusive Mercury, bright Venus, the Zodiacal Light, Mars, Saturn and Jupiter between midnight and dawn!

image

Both Venus and Mercury play the part of "evening stars" this month. At the beginning of the month they appear low on the western horizon.

image

The Moon itself joins the pair from March 18th through the 20th. 

image

The Moon skims by the Pleiades star cluster and Taurus's bright red star Aldebaran on the next few evenings, March 21 through the 23rd.

image

Jupiter, king of the planets, rises just before midnight this month and earlier by month end. 

image

Even through the smallest telescope or average binoculars, you should see the 4 Galilean moons, Europa, Io, Callisto and Ganymede.

image

The March morning sky offers dazzling views of Mars and Saturn all month long.

image

Through a telescope, you can almost make out some of the surface features on Mars.

image

Look a little farther into Mars' future and circle May 5th with a red marker. When our InSight spacecraft launches for its 6 month journey to the Red Planet, Mars will be easily visible to your unaided eye. 

image

Keep watching Mars as it travels closer to Earth. It will be closest in late July, when the red planet will appear larger in apparent diameter than it has since 2003!

image

You are in for a real treat if you can get away to a dark sky location on a moonless night this month -- the Zodiacal Light and the Milky Way intersect! 

image

The Zodiacal light is a faint triangular glow seen from a dark sky just after sunset in the spring or just before sunrise in the fall.

image

The more familiar Milky Way is one of the spiral arms of our galaxy. 

image

What we're seeing is sunlight reflecting off dust grains that circle the Sun in the inner solar system. These dust grains journey across our sky in the ecliptic, the same plane as the Moon and the planets.

Watch the full What’s Up for March Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
7 years ago

Solar System: 10 Things to Know This Week

Week of March 5: Great Shots Inspiring views of our solar system and beyond

1-Mars-By-Numbers

image

“The first TV image of Mars, hand colored strip-by-strip, from Mariner 4 in 1965. The completed image was framed and presented to JPL director, William H. Pickering. Truly a labor of love for science!” -Kristen Erickson, NASA Science Engagement and Partnerships Director

2-Night Life

image

“There are so many stories to this image. It is a global image, but relates to an individual in one glance. There are stories on social, economic, population, energy, pollution, human migration, technology meets science, enable global information, etc., that we can all communicate with similar interests under one image.” -Winnie Humberson, NASA Earth Science Outreach Manager

3-Pale Blue Dot

image

“Whenever I see this picture, I wonder...if another species saw this blue dot what would they say and would they want to discover what goes on there...which is both good and bad. However, it would not make a difference within the eternity of space—we’re so insignificant...in essence just dust in the galactic wind—one day gone forever.”

-Dwayne Brown, NASA Senior Communications Official

4-Grand Central

image

“I observed the Galactic Center with several X-ray telescopes before Chandra, including the Einstein Observatory and ROSAT. But the Chandra image looks nothing like those earlier images, and it reminded me how complex the universe really is. Also I love the colors.” -Paul Hertz, Director, NASA Astrophysics Division

5-Far Side Photobomb

image

“This image from the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the Moon as it moved in front of the sunlit side of Earth in 2015. It shows a view of the farside of the Moon, which faces the Sun, that is never directly visible to us here on Earth. I found this perspective profoundly moving and only through our satellite views could this have been shared.” -Michael Freilich, Director NASA Earth Science Division

6-”Shocking, Exciting and Wonderful”

image

“Pluto was so unlike anything I could imagine based on my knowledge of the Solar System. It showed me how much about the outer solar system we didn’t know. Truly shocking, exciting and wonderful all at the same time.” -Jim Green, Director, NASA Planetary Science Division

7-Slices of the Sun

image

“This is an awesome image of the Sun through the Solar Dynamic Observatory’s many filters. It is one of my favorites.” - Peg Luce, Director, NASA Heliophysics Division (Acting)

8-Pluto’s Cold, Cold Heart

image

“This high-resolution, false color image of Pluto is my favorite. The New Horizons flyby of Pluto on July 14, 2015 capped humanity’s initial reconnaissance of every major body in the solar system. To think that all of this happened within our lifetime! It’s a reminder of how privileged we are to be alive and working at NASA during this historic era of space exploration.” - Laurie Cantillo, NASA Planetary Science Public Affairs Officer

9-Family Portrait

image

“The Solar System family portrait, because it is a symbol what NASA exploration is really about: Seeing our world in a new and bigger way.” - Thomas H. Zurbuchen, Associate Administrator, NASA Science Mission Directorate

10-Share Your Favorite Space Shots

image

Tag @NASASolarSystem on your favorite social media platform with a link to your favorite image and few words about why it makes your heart thump.

Check out the full version of this article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
6 years ago

NASA’s 60th Anniversary: Home, Sweet Home

Earth is a complex, dynamic system. For 60 years, we have studied our changing planet, and our understanding continues to expand with the use of new technologies. With data from satellites, instruments on the International Space Station, airborne missions, balloons, and observations from ships and on land, we track changes to land, water, ice, and the atmosphere. Application of our Earth observations help improve life now and for future generations. Since we opened for business on Oct. 1, 1958, our history tells a story of exploration, innovation and discoveries. The next 60 years, that story continues. Learn more: https://www.nasa.gov/60

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

So you want to work at NASA?

An out of this world career or internship might not be as far out of reach as you think. Check out all the ways you can get involved!

If you’re a student…

image

Our internships are the perfect place to start! We offer paid internships for spring, summer, and fall semesters to U.S. citizens currently attending an accredited university full time. Learn more at: https://intern.nasa.gov

Seriously considering a job in the Federal civil service? Check out the Pathways Internship Program which allows you to do multiple work tours while you finish school: http://nasajobs.nasa.gov/studentopps/employment/iep.htm

If you’re a recent graduate…

image

If you’re a U.S. citizen who has graduated from an accredited college or university within the past 2 years (or 6 if you have served in the military), then the our Recent Graduates program is just for you. Accepted applicants are placed in a 1 year career development program with the possibility of an additional year, or even granted term or permanent jobs within the agency. Learn more at: http://nasajobs.nasa.gov/studentopps/employment/rgp.htm.

If you’re a professional…

image

You can search for our job openings any time at USAJobs.com. Create an account, then use the USAJobs resume builder. Want to make sure your resume maximizes your opportunity for a job at NASA? Check out our Applicant Guide: https://applyonline.nasa.gov/applicant_guide.html.

You can then search for our job openings here: https://nasai.usajobs.gov/.

If you want to be an astronaut…

image

Astronaut candidate applications are accepted every few years- including right now! Get yours in before the current application closes on February 18, 2016.

Do you have a bachelor’s degree in a STEM field and 3 years of related professional experience? You might be eligible. Find out more and apply online at: https://nasai.usajobs.gov/GetJob/ViewDetails/423817000.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

10 Things Einstein Got Right

One hundred years ago, on May 29, 1919, astronomers observed a total solar eclipse in an ambitious  effort to test Albert Einstein’s general theory of relativity by seeing it in action. Essentially, Einstein thought space and time were intertwined in an infinite “fabric,” like an outstretched blanket. A massive object such as the Sun bends the spacetime blanket with its gravity, such that light no longer travels in a straight line as it passes by the Sun.

This means the apparent positions of background stars seen close to the Sun in the sky – including during a solar eclipse – should seem slightly shifted in the absence of the Sun, because the Sun’s gravity bends light. But until the eclipse experiment, no one was able to test Einstein’s theory of general relativity, as no one could see stars near the Sun in the daytime otherwise.

The world celebrated the results of this eclipse experiment— a victory for Einstein, and the dawning of a new era of our understanding of the universe.

General relativity has many important consequences for what we see in the cosmos and how we make discoveries in deep space today. The same is true for Einstein's slightly older theory, special relativity, with its widely celebrated equation E=mc². Here are 10 things that result from Einstein’s theories of relativity:

image

1. Universal Speed Limit

Einstein's famous equation E=mc² contains "c," the speed of light in a vacuum. Although light comes in many flavors – from the rainbow of colors humans can see to the radio waves that transmit spacecraft data – Einstein said all light must obey the speed limit of 186,000 miles (300,000 kilometers) per second. So, even if two particles of light carry very different amounts of energy, they will travel at the same speed.

This has been shown experimentally in space. In 2009, our Fermi Gamma-ray Space Telescope detected two photons at virtually the same moment, with one carrying a million times more energy than the other. They both came from a high-energy region near the collision of two neutron stars about 7 billion years ago. A neutron star is the highly dense remnant of a star that has exploded. While other theories posited that space-time itself has a "foamy" texture that might slow down more energetic particles, Fermi's observations found in favor of Einstein.

image

2. Strong Lensing

Just like the Sun bends the light from distant stars that pass close to it, a massive object like a galaxy distorts the light from another object that is much farther away. In some cases, this phenomenon can actually help us unveil new galaxies. We say that the closer object acts like a “lens,” acting like a telescope that reveals the more distant object. Entire clusters of galaxies can be lensed and act as lenses, too.

When the lensing object appears close enough to the more distant object in the sky, we actually see multiple images of that faraway object. In 1979, scientists first observed a double image of a quasar, a very bright object at the center of a galaxy that involves a supermassive black hole feeding off a disk of inflowing gas. These apparent copies of the distant object change in brightness if the original object is changing, but not all at once, because of how space itself is bent by the foreground object’s gravity.

Sometimes, when a distant celestial object is precisely aligned with another object, we see light bent into an “Einstein ring” or arc. In this image from our Hubble Space Telescope, the sweeping arc of light represents a distant galaxy that has been lensed, forming a “smiley face” with other galaxies.

image

3. Weak Lensing

When a massive object acts as a lens for a farther object, but the objects are not specially aligned with respect to our view, only one image of the distant object is projected. This happens much more often. The closer object’s gravity makes the background object look larger and more stretched than it really is. This is called “weak lensing.”

Weak lensing is very important for studying some of the biggest mysteries of the universe: dark matter and dark energy. Dark matter is an invisible material that only interacts with regular matter through gravity, and holds together entire galaxies and groups of galaxies like a cosmic glue. Dark energy behaves like the opposite of gravity, making objects recede from each other. Three upcoming observatories -- Our Wide Field Infrared Survey Telescope, WFIRST, mission, the European-led Euclid space mission with NASA participation, and the ground-based Large Synoptic Survey Telescope --- will be key players in this effort. By surveying distortions of weakly lensed galaxies across the universe, scientists can characterize the effects of these persistently puzzling phenomena.

Gravitational lensing in general will also enable NASA’s James Webb Space telescope to look for some of the very first stars and galaxies of the universe.

image

4. Microlensing

So far, we’ve been talking about giant objects acting like magnifying lenses for other giant objects. But stars can also “lens” other stars, including stars that have planets around them. When light from a background star gets “lensed” by a closer star in the foreground, there is an increase in the background star’s brightness. If that foreground star also has a planet orbiting it, then telescopes can detect an extra bump in the background star’s light, caused by the orbiting planet. This technique for finding exoplanets, which are planets around stars other than our own, is called “microlensing.”

Our Spitzer Space Telescope, in collaboration with ground-based observatories, found an “iceball” planet through microlensing. While microlensing has so far found less than 100 confirmed planets,  WFIRST could find more than 1,000 new exoplanets using this technique.

image

5. Black Holes

The very existence of black holes, extremely dense objects from which no light can escape, is a prediction of general relativity. They represent the most extreme distortions of the fabric of space-time, and are especially famous for how their immense gravity affects light in weird ways that only Einstein’s theory could explain.

In 2019 the Event Horizon Telescope international collaboration, supported by the National Science Foundation and other partners, unveiled the first image of a black hole’s event horizon, the border that defines a black hole’s “point of no return” for nearby material. NASA's Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels Swift Observatory, and Fermi Gamma-ray Space Telescope all looked at the same black hole in a coordinated effort, and researchers are still analyzing the results.

image

6. Relativistic Jets

This Spitzer image shows the galaxy Messier 87 (M87) in infrared light, which has a supermassive black hole at its center. Around the black hole is a disk of extremely hot gas, as well as two jets of material shooting out in opposite directions. One of the jets, visible on the right of the image, is pointing almost exactly toward Earth. Its enhanced brightness is due to the emission of light from particles traveling toward the observer at near the speed of light, an effect called “relativistic beaming.” By contrast, the other jet is invisible at all wavelengths because it is traveling away from the observer near the speed of light. The details of how such jets work are still mysterious, and scientists will continue studying black holes for more clues. 

image

7. A Gravitational Vortex

Speaking of black holes, their gravity is so intense that they make infalling material “wobble” around them. Like a spoon stirring honey, where honey is the space around a black hole, the black hole’s distortion of space has a wobbling effect on material orbiting the black hole. Until recently, this was only theoretical. But in 2016, an international team of scientists using European Space Agency's XMM-Newton and our Nuclear Spectroscopic Telescope Array (NUSTAR) announced they had observed the signature of wobbling matter for the first time. Scientists will continue studying these odd effects of black holes to further probe Einstein’s ideas firsthand.

Incidentally, this wobbling of material around a black hole is similar to how Einstein explained Mercury’s odd orbit. As the closest planet to the Sun, Mercury feels the most gravitational tug from the Sun, and so its orbit’s orientation is slowly rotating around the Sun, creating a wobble.

image

 8. Gravitational Waves

Ripples through space-time called gravitational waves were hypothesized by Einstein about 100 years ago, but not actually observed until recently. In 2016, an international collaboration of astronomers working with the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors announced a landmark discovery: This enormous experiment detected the subtle signal of gravitational waves that had been traveling for 1.3 billion years after two black holes merged in a cataclysmic event. This opened a brand new door in an area of science called multi-messenger astronomy, in which both gravitational waves and light can be studied.

For example, our telescopes collaborated to measure light from two neutron stars merging after LIGO detected gravitational wave signals from the event, as announced in 2017. Given that gravitational waves from this event were detected mere 1.7 seconds before gamma rays from the merger, after both traveled 140 million light-years, scientists concluded Einstein was right about something else: gravitational waves and light waves travel at the same speed.

image

9. The Sun Delaying Radio Signals

Planetary exploration spacecraft have also shown Einstein to be right about general relativity. Because spacecraft communicate with Earth using light, in the form of radio waves, they present great opportunities to see whether the gravity of a massive object like the Sun changes light’s path.  

In 1970, our Jet Propulsion Laboratory announced that Mariner VI and VII, which completed flybys of Mars in 1969, had conducted experiments using radio signals — and also agreed with Einstein. Using NASA’s Deep Space Network (DSN), the two Mariners took several hundred radio measurements for this purpose. Researchers measured the time it took for radio signals to travel from the DSN dish in Goldstone, California, to the spacecraft and back. As Einstein would have predicted, there was a delay in the total roundtrip time because of the Sun’s gravity. For Mariner VI, the maximum delay was 204 microseconds, which, while far less than a single second, aligned almost exactly with what Einstein’s theory would anticipate.

In 1979, the Viking landers performed an even more accurate experiment along these lines. Then, in 2003 a group of scientists used NASA’s Cassini Spacecraft to repeat these kinds of radio science experiments with 50 times greater precision than Viking. It’s clear that Einstein’s theory has held up! 

image

10. Proof from Orbiting Earth

In 2004, we launched a spacecraft called Gravity Probe B specifically designed to watch Einstein’s theory play out in the orbit of Earth. The theory goes that Earth, a rotating body, should be pulling the fabric of space-time around it as it spins, in addition to distorting light with its gravity.

The spacecraft had four gyroscopes and pointed at the star IM Pegasi while orbiting Earth over the poles. In this experiment, if Einstein had been wrong, these gyroscopes would have always pointed in the same direction. But in 2011, scientists announced they had observed tiny changes in the gyroscopes’ directions as a consequence of Earth, because of its gravity, dragging space-time around it.

10 Things Einstein Got Right

BONUS: Your GPS! Speaking of time delays, the GPS (global positioning system) on your phone or in your car relies on Einstein’s theories for accuracy. In order to know where you are, you need a receiver – like your phone, a ground station and a network of satellites orbiting Earth to send and receive signals. But according to general relativity, because of Earth’s gravity curving spacetime, satellites experience time moving slightly faster than on Earth. At the same time, special relativity would say time moves slower for objects that move much faster than others.

When scientists worked out the net effect of these forces, they found that the satellites’ clocks would always be a tiny bit ahead of clocks on Earth. While the difference per day is a matter of millionths of a second, that change really adds up. If GPS didn’t have relativity built into its technology, your phone would guide you miles out of your way!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Hi, I'm a curious Malaysian 😁 can you explain to us about your career and how do one get to the point where you are now? Thanks! Oh, and could you comment on the recent climate crises like the Australian fires and Indonesia flooding? Thank you!


Tags
6 years ago

Solar System 10 Things: Two Years of Juno at Jupiter

Our Juno mission arrived at the King of Planets in July 2016. The intrepid robotic explorer has been revealing Jupiter's secrets ever since. 

Here are 10 historic Juno mission highlights:

image

1. Arrival at a Colossus

After an odyssey of almost five years and 1.7 billion miles (2.7 billion kilometers), our Juno spacecraft fired its main engine to enter orbit around Jupiter on July 4, 2016. Juno, with its suite of nine science instruments, was the first spacecraft to orbit the giant planet since the Galileo mission in the 1990s. It would be the first mission to make repeated excursions close to the cloud tops, deep inside the planet’s powerful radiation belts.

image

2. Science, Meet Art

Juno carries a color camera called JunoCam. In a remarkable first for a deep space mission, the Juno team reached out to the general public not only to help plan which pictures JunoCam would take, but also to process and enhance the resulting visual data. The results include some of the most beautiful images in the history of space exploration.

image

3. A Whole New Jupiter

It didn’t take long for Juno—and the science teams who hungrily consumed the data it sent home—to turn theories about how Jupiter works inside out. Among the early findings: Jupiter's poles are covered in Earth-sized swirling storms that are densely clustered and rubbing together. Jupiter's iconic belts and zones were surprising, with the belt near the equator penetrating far beneath the clouds, and the belts and zones at other latitudes seeming to evolve to other structures below the surface.

4. The Ultimate Classroom

The Goldstone Apple Valley Radio Telescope (GAVRT) project, a collaboration among NASA, JPL and the Lewis Center for Educational Research, lets students do real science with a large radio telescope. GAVRT data includes Jupiter observations relevant to Juno, and Juno scientists collaborate with the students and their teachers.

image

5. Spotting the Spot

Measuring in at 10,159 miles (16,350 kilometers) in width (as of April 3, 2017) Jupiter's Great Red Spot is 1.3 times as wide as Earth. The storm has been monitored since 1830 and has possibly existed for more than 350 years. In modern times, the Great Red Spot has appeared to be shrinking. In July 2017, Juno passed directly over the spot, and JunoCam images revealed a tangle of dark, veinous clouds weaving their way through a massive crimson oval.

“For hundreds of years scientists have been observing, wondering and theorizing about Jupiter’s Great Red Spot,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “Now we have the best pictures ever of this iconic storm. It will take us some time to analyze all the data from not only JunoCam, but Juno’s eight science instruments, to shed some new light on the past, present and future of the Great Red Spot.”

image

6. Beauty Runs Deep

Data collected by the Juno spacecraft during its first pass over Jupiter's Great Red Spot in July 2017 indicate that this iconic feature penetrates well below the clouds. The solar system's most famous storm appears to have roots that penetrate about 200 miles (300 kilometers) into the planet's atmosphere.

image

7. Powerful Auroras, Powerful Mysteries

Scientists on the Juno mission observed massive amounts of energy swirling over Jupiter’s polar regions that contribute to the giant planet’s powerful auroras – only not in ways the researchers expected. Examining data collected by the ultraviolet spectrograph and energetic-particle detector instruments aboard Juno, scientists observed signatures of powerful electric potentials, aligned with Jupiter’s magnetic field, that accelerate electrons toward the Jovian atmosphere at energies up to 400,000 electron volts. This is 10 to 30 times higher than the largest such auroral potentials observed at Earth. 

Jupiter has the most powerful auroras in the solar system, so the team was not surprised that electric potentials play a role in their generation. What puzzled the researchers is that despite the magnitudes of these potentials at Jupiter, they are observed only sometimes and are not the source of the most intense auroras, as they are at Earth.

8. Heat from Within

Juno scientists shared a 3D infrared movie depicting densely packed cyclones and anticyclones that permeate the planet’s polar regions, and the first detailed view of a dynamo, or engine, powering the magnetic field for any planet beyond Earth (video above). Juno mission scientists took data collected by the spacecraft’s Jovian InfraRed Auroral Mapper (JIRAM) instrument and generated a 3D fly-around of the Jovian world’s north pole. 

Imaging in the infrared part of the spectrum, JIRAM captures light emerging from deep inside Jupiter equally well, night or day. The instrument probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter's cloud tops.

image

9. A Highly Charged Atmosphere

Powerful bolts of lightning light up Jupiter’s clouds. In some ways its lightning is just like what we’re used to on Earth. In other ways,it’s very different. For example, most of Earth’s lightning strikes near the equator; on Jupiter, it’s mostly around the poles.

image

10. Extra Innings

In June, we approved an update to Juno’s science operations until July 2021. This provides for an additional 41 months in orbit around. Juno is in 53-day orbits rather than 14-day orbits as initially planned because of a concern about valves on the spacecraft’s fuel system. This longer orbit means that it will take more time to collect the needed science data, but an independent panel of experts confirmed that Juno is on track to achieve its science objectives and is already returning spectacular results. The spacecraft and all its instruments are healthy and operating nominally. ​

Read the full web version of this week’s ‘Solar System: 10 Things to Know’ article HERE. 

For regular updates, follow NASA Solar System on Twitter and Facebook. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

10 Frequently Asked Questions About the James Webb Space Telescope

Got basic questions about the James Webb Space Telescope and what amazing things we’ll learn from it? We’ve got your answers right here! 

The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2021. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.

image

1. What is the James Webb Space Telescope?

Our James Webb Space Telescope is a giant space telescope that observes infrared light. Rather than a replacement for the Hubble Space Telescope, it’s a scientific successor that will complement and extend its discoveries.

image

Being able to see longer wavelengths of light than Hubble and having greatly improved sensitivity will let Webb look further back in time to see the first galaxies that formed in the early universe, and to peer inside dust clouds where stars and planetary systems are forming today.

image

2. What are the most exciting things we will learn?

We have yet to observe the era of our universe’s history when galaxies began to form. 

We have a lot to learn about how galaxies got supermassive black holes in their centers, and we don't really know whether the black holes caused the galaxies to form or vice versa.

image

We can't see inside dust clouds with high resolution, where stars and planets are being born nearby, but Webb will be able to do just that. 

We don't know how many planetary systems might be hospitable to life, but Webb could tell whether some Earth-like planets have enough water to have oceans.

image

We don't know much about dark matter or dark energy, but we expect to learn more about where the dark matter is now, and we hope to learn the history of the acceleration of the universe that we attribute to dark energy. 

And then, there are the surprises we can't imagine!

3. Why is Webb an infrared telescope?

By viewing the universe at infrared wavelengths with such sensitivity, Webb will show us things never before seen by any other telescope. For example, it is only at infrared wavelengths that we can see the first stars and galaxies forming after the Big Bang. 

image

And it is with infrared light that we can see stars and planetary systems forming inside clouds of dust that are opaque to visible light, such as in the above visible and infrared light comparison image of the Carina Nebula.

4. Will Webb take amazing pictures like Hubble? Can Webb see visible light?

YES, Webb will take amazing pictures! We are going to be looking at things we've never seen before and looking at things we have seen before in completely new ways.

The beauty and quality of an astronomical image depends on two things: the sharpness and the number of pixels in the camera. On both of these counts, Webb is very similar to, and in many ways better than, Hubble. 

image

Additionally Webb can see orange and red visible light. Webb images will be different, but just as beautiful as Hubble's. Above, there is another comparison of infrared and visible light Hubble images, this time of the Monkey Head Nebula.

5. What will Webb's first targets be?

The first targets for Webb will be determined through a process similar to that used for the Hubble Space Telescope and will involve our experts, the European Space Agency (ESA), the Canadian Space Agency (CSA), and scientific community participants.

image

The first engineering target will come before the first science target and will be used to align the mirror segments and focus the telescope. That will probably be a relatively bright star or possibly a star field.

6. How does Webb compare with Hubble?

Webb is designed to look deeper into space to see the earliest stars and galaxies that formed in the universe and to look deep into nearby dust clouds to study the formation of stars and planets.

image

In order to do this, Webb has a much larger primary mirror than Hubble (2.5 times larger in diameter, or about 6 times larger in area), giving it more light-gathering power. It also will have infrared instruments with longer wavelength coverage and greatly improved sensitivity than Hubble. 

Finally, Webb will operate much farther from Earth, maintaining its extremely cold operating temperature, stable pointing and higher observing efficiency than with the Earth-orbiting Hubble.

7. What will Webb tell us about planets outside our solar system? Will it take photos of these planets?

Webb will be able to tell us the composition of the atmospheres of planets outside our solar system, aka exoplanets. It will observe planetary atmospheres through the transit technique. A transit is when a planet moves across the disc of its parent star. 

image

Webb will also carry coronographs to enable photography of exoplanets (planets outside our solar system) near bright stars (if they are big and bright and far from the star), but they will be only "dots," not grand panoramas. Coronographs block the bright light of stars, which could hide nearby objects like exoplanets.

Consider how far away exoplanets are from us, and how small they are by comparison to this distance! We didn’t even know what Pluto really looked like until we were able to send an observatory to fly right near it in 2015, and Pluto is in our own solar system!

8. Will we image objects in our own solar system?

Yes! Webb will be able to observe the planets at or beyond the orbit of Mars, satellites, comets, asteroids and objects in the distant, icy Kuiper Belt.

Many important molecules, ices and minerals have strong characteristic signatures at the wavelengths Webb can observe. 

image

Webb will also monitor the weather of planets and their moons. 

Because the telescope and instruments have to be kept cold, Webb’s protective sunshield will block the inner solar system from view. This means that the Sun, Earth, Moon, Mercury, and Venus, and of course Sun-grazing comets and many known near-Earth objects cannot be observed.

9. How far back will Webb see? 

image

Webb will be able to see what the universe looked like around a quarter of a billion years (possibly back to 100 million years) after the Big Bang, when the first stars and galaxies started to form.

10. When will Webb launch and how long is the mission?

Webb will launch in 2021 from French Guiana on a European Space Agency Ariane 5 rocket. 

image

Webb’s mission lifetime after launch is designed to be at least 5-1/2 years, and could last longer than 10 years. The lifetime is limited by the amount of fuel used for maintaining the orbit, and by the possibility that Webb’s components will degrade over time in the harsh environment of space.

Looking for some more in-depth FAQs? You can find them HERE.

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

IMAGE CREDITS Carina Nebula: ESO/T. Preibisch Monkey Head Nebula: NASA, ESA, the Hubble Heritage Team (STScI/AURA), and J. Hester

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • somin-yin
    somin-yin liked this · 2 months ago
  • beachbumbricktucky
    beachbumbricktucky liked this · 9 months ago
  • beachbumbricktucky
    beachbumbricktucky reblogged this · 9 months ago
  • shifu1511
    shifu1511 liked this · 1 year ago
  • thunderbird1lover
    thunderbird1lover liked this · 1 year ago
  • georg-prime
    georg-prime liked this · 1 year ago
  • amphibiainwartwood
    amphibiainwartwood liked this · 1 year ago
  • edgoforth
    edgoforth reblogged this · 1 year ago
  • edgoforth
    edgoforth liked this · 1 year ago
  • im-just-a-lady
    im-just-a-lady reblogged this · 1 year ago
  • im-just-a-lady
    im-just-a-lady liked this · 1 year ago
  • aryansquibbles
    aryansquibbles liked this · 1 year ago
  • evilmoriarty
    evilmoriarty liked this · 1 year ago
  • super-nerdi
    super-nerdi liked this · 1 year ago
  • yakisobareikilifspirt
    yakisobareikilifspirt liked this · 1 year ago
  • linyarguilera
    linyarguilera reblogged this · 1 year ago
  • saoryfukuschima
    saoryfukuschima liked this · 1 year ago
  • crashalido
    crashalido reblogged this · 1 year ago
  • jbarkerstargazer
    jbarkerstargazer liked this · 1 year ago
  • somewhat-intelligent
    somewhat-intelligent liked this · 1 year ago
  • illmamnim-spamming
    illmamnim-spamming reblogged this · 2 years ago
  • illmamnim-spamming
    illmamnim-spamming liked this · 2 years ago
  • blossombeeflower
    blossombeeflower liked this · 2 years ago
  • camachik
    camachik reblogged this · 2 years ago
  • tw0fish
    tw0fish liked this · 2 years ago
  • a-d-a-cstuff
    a-d-a-cstuff liked this · 2 years ago
  • bluebaronness
    bluebaronness liked this · 2 years ago
  • smallsimplestars
    smallsimplestars liked this · 2 years ago
  • maguixinha0202-blog
    maguixinha0202-blog liked this · 2 years ago
  • yatpundit
    yatpundit liked this · 2 years ago
  • beautyqueenofstandardhigh
    beautyqueenofstandardhigh liked this · 2 years ago
  • phoenixlionme
    phoenixlionme reblogged this · 2 years ago
  • cybersylvanian
    cybersylvanian liked this · 2 years ago
  • entrancedbycock
    entrancedbycock liked this · 2 years ago
  • absolutesciencefiction
    absolutesciencefiction reblogged this · 2 years ago
  • androidsghost
    androidsghost liked this · 2 years ago
  • trusty-fridge
    trusty-fridge liked this · 2 years ago
  • mrm7moud
    mrm7moud liked this · 2 years ago
  • letuce369
    letuce369 reblogged this · 2 years ago
  • strawberry-frogs
    strawberry-frogs liked this · 2 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags