Experience Tumblr like never before
Bro but what about when map distortion is taken into consideration
“At a glacial pace” used to mean moving so slowly the movement is almost imperceptible. Lately though, glaciers are moving faster. Ice on land is melting and flowing, sending water to the oceans, where it raises sea levels.
In 2018, we launched the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) to continue a global record of ice elevation. Now, the results are in. Using millions of measurements from a laser in space and quite a bit of math, researchers have confirmed that Earth is rapidly losing ice.
ICESat-2 was a follow-up mission to the original ICESat, which launched in 2003 and took measurements until 2009. Comparing the two records tells us how much ice sheets have lost over 16 years.
During those 16 years, melting ice from Antarctica and Greenland was responsible for just over a half-inch of sea level rise. When ice on land melts, it eventually finds its way to the ocean. The rapid melt at the poles is no exception.
One gigaton of ice holds enough water to fill 400,000 Olympic swimming pools. It’s also enough ice to cover Central Park in New York in more than 1,000 feet of ice.
Between 2003 and 2019, Greenland lost 200 gigatons of ice per year. That’s 80 million Olympic swimming pools reaching the ocean every year, just from Greenland alone.
During the same time period, Antarctica lost 118 gigatons of ice per year. That’s another 47 million Olympic swimming pools every year. While there has been some elevation gain in the continent’s center from increased snowfall, it’s nowhere near enough to make up for how much ice is lost to the sea from coastal glaciers.
ICESat-2 sends out 10,000 pulses of laser light a second down to Earth’s surface and times how long it takes them to return to the satellite, down to a billionth of a second. That’s how we get such precise measurements of height and changing elevation.
These numbers confirm what scientists have been finding in most previous studies and continue a long record of data showing how Earth’s polar ice is melting. ICESat-2 is a key tool in our toolbox to track how our planet is changing.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
“At a glacial pace” used to mean moving so slowly the movement is almost imperceptible. Lately though, glaciers are moving faster. Ice on land is melting and flowing, sending water to the oceans, where it raises sea levels.
In 2018, we launched the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) to continue a global record of ice elevation. Now, the results are in. Using millions of measurements from a laser in space and quite a bit of math, researchers have confirmed that Earth is rapidly losing ice.
ICESat-2 was a follow-up mission to the original ICESat, which launched in 2003 and took measurements until 2009. Comparing the two records tells us how much ice sheets have melted over 16 years.
During those 16 years, melting ice from Antarctica and Greenland was responsible for just over a half-inch of sea level rise. When ice on land melts, it eventually finds its way to the ocean. The rapid melt at the poles is no exception.
One gigaton of ice holds enough water to fill 400,000 Olympic swimming pools. It’s also enough ice to cover Central Park in New York in more than 1,000 feet of ice.
Between 2003 and 2019, Greenland lost 200 gigatons of ice per year. That’s 80 million Olympic swimming pools reaching the ocean every year, just from Greenland alone.
During the same time period, Antarctica lost 118 gigatons of ice per year. That’s another 47 million Olympic swimming pools every year. While there has been some elevation gain in the continent’s center from increased snowfall, it’s nowhere near enough to make up for how much ice is lost to the sea from coastal glaciers.
ICESat-2 sends out 10,000 pulses of laser light a second down to Earth’s surface and times how long it takes them to return to the satellite, down to a billionth of a second. That’s how we get such precise measurements of height and changing elevation.
These numbers confirm what scientists have been finding in most previous studies and continue a long record of data showing how Earth’s polar ice is melting. ICESat-2 is a key tool in our toolbox to track how our planet is changing.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Time-lapses taken from space can help track how Earth’s polar regions are changing, watching as glaciers retreat and accelerate, and ice sheets melt over decades.
Using our long data record and a new computer program, we can watch Alaskan glaciers shift and flow every year since 1972. Columbia Glacier, which was relatively stable in the 1970s, has since retreated rapidly as the climate continues to warm.
The Malaspina Glacier has pulsed and spread and pulsed again. The flashes and imperfect frames in these time-lapses result from the need for cloud-free images from each year, and the technology limitations of the early generation satellites.
In Greenland, glaciers are also reacting to the warming climate. Glaciers are essentially frozen rivers, flowing across land. As they get warmer, they flow faster and lose more ice to the ocean. On average, glaciers in Greenland have retreated about 3 miles between 1985 and 2018. The amount of ice loss was fairly consistent for the first 15 years of the record, but started increasing around 2000.
Warmer temperatures also affect Greenland farther inland, where the surface of ice sheets and glaciers melts, forming lakes that can be up to 3 miles across. Over the last 20 years, the number of meltwater lakes forming in Greenland increased 27% and appeared at higher elevations, where temperatures were previously too cold for melt.
Whether they're studying how ice flows into the water, or how water pools atop ice, scientists are investigating some of the many aspects of how climate affects Earth's polar regions.
For more information, visit climate.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It won’t be until summertime that a significant amount of melt shows up across the Greenland Ice Sheet. For now, most indications of meltwater ponds and lakes are leftovers from past seasons that have since refrozen.
These photographs were snapped during research flights for NASA’s Operation IceBridge—now in its final year after a decade of airborne missions to map polar ice.
This second image was acquired on April 18, 2019, with the Continuous Airborne Mapping by Optical Translator (CAMBOT) system. The system takes downward-looking images throughout a flight, which can later be used by scientists to interpret other data. This image shows part of a large, frozen lake on Storstrømmen Glacier. This lake also thaws in summertime, which is why it shows up as blue ice.
Lakes atop a glacier, or “supraglacial lakes,” are somewhat stable in terms of their location, according to Joe MacGregor, NASA project scientist for Operation IceBridge. The lake on Storstrømmen is visible in satellite data at least as far back as May 2012. On occasion, water in lakes like this can drain away through a vertical shaft known as a “moulin.” Scientists initially wondered if the dark circular area on the right side of this image could be a moulin, but closer inspection suggested it is just a deeper part of the lake.
See more photos of the frozen lakes in Greenland: https://earthobservatory.nasa.gov/images/144965/greenland-refrozen
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Each year since 2009, geophysicist and pilot Chris Larsen has led two sets of flights to monitor Alaska’s mountain glaciers. From the air, scientists like Larsen collect critical information on how the region’s snow and ice is changing. They also are in a good position to snap photographs of the stunning landscape. Larsen was flying with NASA science writer Maria-Jose Viñas on board. During a flight on August 19, 2018, Viñas shot this photograph during a mission to survey Yakutat Icefield and nearby glaciers in southeast Alaska.
The beach and stream in the photograph are in Russel Fjord near the terminus of the Hubbard Glacier. While this photograph does not show any glaciers, evidence of their presence is all around. Meltwater winds down a vegetation-free path of glacial till. On its way toward open water, the stream cuts through a beach strewn with icebergs. “The Hubbard Glacier has a broad and active calving front providing a generous supply of icebergs,” said Larsen, a researcher at the University of Alaska, Fairbanks. “They are present all summer since new ones keep coming from the glacier.”
NASA’s Operation IceBridge makes lengthy flights each year over the landmasses of Greenland and Antarctica and their surrounding sea ice. While IceBridge-Alaska flights are shorter in length, the terrain is equally majestic and its snow and ice important to monitor. Wherever IceBridge flights are made, data collection depends in part on weather and instruments.
Read more: https://go.nasa.gov/2Mj48r0
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Oceans Melting Greenland (OMG) scientists are heading into the field this week to better understand how seawater is melting Greenland’s ice from below. (Yes, those black specks are people next to an iceberg.) While NASA is studying ocean properties (things like temperature, salinity and currents), other researchers are eager to incorporate our data into their work. In fact, University of Washington scientists are using OMG data to study narwhals – smallish whales with long tusks – otherwise known as the “unicorns of the sea.”
Our researchers are also in the field right now studying how Alaska’s ice is changing. Operation IceBridge, our longest airborne campaign, is using science instruments on airplanes to study and measure the ice below.
What happens in the Arctic doesn’t stay in the Arctic (or the Antarctic, really). In a warming world, the greatest changes are seen in the coldest places. Earth’s cryosphere – its ice sheets, sea ice, glaciers, permafrost and snow cover – acts as our planet’s thermostat and deep freeze, regulating temperatures and storing most of our freshwater. Next month, we’re launching ICESat-2, our latest satellite to study Earth’s ice!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
1. Earth's Changing Cryosphere
This year, we will launch two satellite missions that will increase our understanding of Earth's frozen reaches. Snow, ice sheets, glaciers, sea ice and permafrost, known as the cryosphere, act as Earth's thermostat and deep freeze, regulating temperatures by reflecting heat from the Sun and storing most of our fresh water.
2. GRACE-FO: Building on a Legacy and Forging Ahead
The next Earth science satellites set to launch are twins! The identical satellites of the GRACE Follow-On mission will build on the legacy of their predecessor GRACE by also tracking the ever-changing movement of water around our planet, including Earth's frozen regions. GRACE-FO, a partnership between us and the German Research Center for Geosciences (GFZ), will provide critical information about how the Greenland and Antarctic ice sheets are changing. GRACE-FO, working together, will measure the distance between the two satellites to within 1 micron (much less than the width of a human hair) to determine the mass below.
Greenland has been losing about 280 gigatons of ice per year on average, and Antarctica has lost almost 120 gigatons a year with indications that both melt rates are increasing. A single gigaton of water would fill about 400,000 Olympic-sized swimming pools; each gigaton represents a billion tons of water.
3. ICESat-2: 10,000 Laser Pulses a Second
In September, we will launch ICESat-2, which uses a laser instrument to precisely measure the changing elevation of ice around the world, allowing scientists to see whether ice sheets and glaciers are accumulating snow and ice or getting thinner over time. ICESat-2 will also make critical measurements of the thickness of sea ice from space. Its laser instrument sends 10,000 pulses per second to the surface and will measure the photons' return trip to satellite. The trip from ICESat-2 to Earth and back takes about 3.3 milliseconds.
4. Seeing Less Sea Ice
Summertime sea ice in the Arctic Ocean now routinely covers about 40% less area than it did in the late 1970s, when continuous satellite observations began. This kind of significant change could increase the rate of warming already in progress and affect global weather patterns.
5. The Snow We Drink
In the western United States, 1 in 6 people rely on snowpack for water. Our field campaigns such as the Airborne Snow Observatory and SnowEx seek to better understand how much water is held in Earth's snow cover, and how we could ultimately measure this comprehensively from space.
6. Hidden in the Ground
Permafrost - permanently frozen ground in the Arctic that contains stores of heat-trapping gases such as methane and carbon dioxide - is thawing at faster rates than previously observed. Recent studies suggest that within three to four decades, this thawing could be releasing enough greenhouse gases to make Arctic permafrost a net source of carbon dioxide rather than a sink. Through airborne and field research on missions such as CARVE and ABoVE - the latter of which will put scientists back in the field in Alaska and Canada this summer - our scientists are trying to improve measurements of this trend in order to better predict global impact.
7. Breaking Records Over Cracking Ice
Last year was a record-breaking one for Operation IceBridge, our aerial survey of polar ice. For the first time in its nine-year history, the mission carried out seven field campaigns in the Arctic and Antarctic in a single year. In total, the IceBridge scientists and instruments flew over 214,000 miles, the equivalent of orbiting the Earth 8.6 times at the equator.
On March 22, we completed the first IceBridge flight of its spring Arctic campaign with a survey of sea ice north of Greenland. This year marks the 10th Arctic spring campaign for IceBridge. The flights continue until April 27 extending the mission's decade-long mapping of the fastest-changing areas of the Greenland Ice Sheet and measuring sea ice thickness across the western Arctic basin.
8. OMG
Researchers were back in the field this month in Greenland with our Oceans Melting Greenland survey. The airborne and ship-based mission studies the ocean's role in melting Greenland's ice. Researchers examine temperatures, salinity and other properties of North Atlantic waters along the more than 27,000 miles (44,000 km) of jagged coastline.
9. DIY Glacier Modeling
Computer models are critical tools for understanding the future of a changing planet, including melting ice and rising seas. Our new sea level simulator lets you bury Alaska's Columbia glacier in snow, and, year by year, watch how it responds. Or you can melt the Greenland and Antarctic ice sheets and trace rising seas as they inundate the Florida coast.
10. Ice Beyond Earth
Ice is common in our solar system. From ice packed into comets that cruise the solar system to polar ice caps on Mars to Europa and Enceladus-the icy ocean moons of Jupiter and Saturn-water ice is a crucial ingredient in the search for life was we know it beyond Earth.
Read the full version of this week’s 10 Things to Know HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Using a fleet of research aircraft, our Operation IceBridge images Earth's polar ice to better understand connections between polar regions and the global climate system. IceBridge studies annual changes in thickness of sea ice, glaciers and ice sheets. IceBridge bridges the gap between the ICESat missions.
Seen here is a time-lapse view of a glacier-run from the cockpit of our P-3 Orion aircraft taken during a May 8, 2017 flight over Greenland's Southeast glaciers.
Video credit: NASA/Gerrit Everson
Take a look back at this season’s Arctic ice survey HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
For thousands of years, sea level has remained relatively stable. But now, Earth’s seas are rising. Since the beginning of the 20th century, they have risen about eight inches, and more than two inches in the last 20 years alone!
As water warms, it expands and takes up more space. That means that when oceans warm, the sea level rises. This summer, we’ve been researching exactly how global warming has impacted Greenland’s ice sheet. Our ICESat-2 mission will use a laser to measure the height of the planet’s surface. Over time, we will be able to provide a record of elevation change, and estimate how much water has melted into the ocean from land ice change.
So how much ice are we actually losing? Great question, but the answer might shock you. In Greenland alone, 303 gigatons of ice was lost in 2014!
Since we know that ice is melting, we’re working to gain a better understanding of how much and how fast. We’re using everything from planes, probes and boats, to satellites and lasers to determine the impact of global warming on the Earth’s ice.
Follow along for updates and information: http://climate.nasa.gov/