Any advice for young girls going into the sciences?
Orbital ATK’s Cygnus CRS-6 spacecraft launched to the International Space Station on March 22.
Cygnus will carry almost 7,500 pounds of science and research, crew supplies and vehicle hardware to the orbiting laboratory.
After launch in Florida, the spacecraft will arrive to the station on Saturday, March 26. Upon arrival, NASA astronaut and Expedition 46 Commander Tim Kopra will capture Cygnus at about 6:40 a.m. using the space station's Canadarm2 robotic arm to take hold of the spacecraft. Astronaut Tim Peake of ESA (European Space Agency) will support Kopra in a backup position.
Installation (when Cygnus is connected to space station) is expected to begin at 9:25 a.m. NASA TV coverage for installation resumes at 9:15 a.m.
After the Cygnus spacecraft is berthed (connected) to the space station, the contents will be emptied and brought inside for use. Any trash that is on the space station, can be put inside the empty Cygnus before it is undocked from station and sent to burn up in Earth’s atmosphere.
You can watch the capture of Orbital ATK’s Cygnus spacecraft online. Stream live coverage starting at 5:30 a.m. EDT on Saturday, March 26. Capture is scheduled for 6:40 a.m.
Tune in again at 9:15 a.m. to watch #Cygnus installation to the station.
Watch online: nasa.gov/nasatv
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
After seven years of studying the radiation around Earth, the Van Allen Probes spacecraft have retired.
Originally slated for a two-year mission, these two spacecraft studied Earth's radiation belts — giant, donut-shaped clouds of particles surrounding Earth — for nearly seven years. The mission team used the last of their propellant this year to place the spacecraft into a lower orbit that will eventually decay, allowing the Van Allen Probes to re-enter and burn up in Earth's atmosphere.
Earth's radiation belts exist because energized charged particles from the Sun and other sources in space become trapped in our planet's huge magnetic field, creating vast regions around Earth that teem with radiation. This is one of the harshest environments in space — and the Van Allen Probes survived more than three times longer than planned orbiting through this intense region.
The shape, size and intensity of the radiation belts change, meaning that satellites — like those used for telecommunications and GPS — can be bombarded with a sudden influx of radiation. The Van Allen Probes shed new light on what invisible forces drive these changes — like waves of charged particles and electromagnetic fields driven by the Sun, called space weather.
Here are a few scientific highlights from the Van Allen Probes — from the early days of the mission to earlier this year:
The Van Allen belts were first discovered in 1958, and for decades, scientists thought there were only two concentric belts. But, days after the Van Allen Probes launched, scientists discovered that during times of intense solar activity, a third belt can form.
The belts are composed of charged particles and electromagnetic fields and can be energized by different types of plasma waves. One type, called electrostatic double layers, appear as short blips of enhanced electric field. During one observing period, Probe B saw 7,000 such blips repeatedly pass over the spacecraft in a single minute!
During big space weather storms, which are ultimately caused by activity on the Sun, ions — electrically charged atoms or molecules — can be pushed deep into Earth’s magnetosphere. These particles carry electromagnetic currents that circle around the planet and can dramatically distort Earth’s magnetic field.
Across space, fluctuating electric and magnetic fields can create what are known as plasma waves. These waves intensify during space weather storms and can accelerate particles to incredible speeds. The Van Allen Probes found that one type of plasma wave known as hiss can contribute greatly to the loss of electrons from the belts.
The Van Allen belts are composed of electrons and ions with a range of energies. In 2015, research from the Van Allen Probes found that, unlike the outer belt, there were no electrons with energies greater than a million electron volts in the inner belt.
Plasma waves known as whistler chorus waves are also common in our near-Earth environment. These waves can travel parallel or at an angle to the local magnetic field. The Van Allen Probes demonstrated the two types of waves cannot be present simultaneously, resulting in greater radiation belt particle scattering in certain areas.
Very low frequency chorus waves, another variety of plasma waves, can pump up the energy of electrons to millions of electronvolts. During storm conditions, the Van Allen Probes found these waves can hugely increase the energy of particles in the belts in just a few hours.
Scientists often use computer simulation models to understand the physics behind certain phenomena. A model simulating particles in the Van Allen belts helped scientists understand how particles can be lost, replenished and trapped by Earth’s magnetic field.
The Van Allen Probes observed several cases of extremely energetic ions speeding toward Earth. Research found that these ions’ acceleration was connected to their electric charge and not to their mass.
The Sun emits faster and slower gusts of charged particles called the solar wind. Since the Sun rotates, these gusts — the fast wind — reach Earth periodically. Changes in these gusts cause the extent of the region of cold ionized gas around Earth — the plasmasphere — to shrink. Data from the Van Allen Probes showed that such changes in the plasmasphere fluctuated at the same rate as the solar rotation — every 27 days.
Though the mission has ended, scientists will use data from the Van Allen Probes for years to come. See the latest Van Allen Probes science at nasa.gov/vanallen.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today – Thursday, June 21 – is the summer solstice in the northern hemisphere. But what causes this change in seasons? And what exactly is a solstice? It’s all about Earth’s tilt!
Many people believe that Earth is closer to the Sun in the summer and that is why it is hotter. And, likewise, they think Earth is farthest from the Sun in the winter.
Although this idea makes sense, it is incorrect. There is a different reason for Earth's seasons.
Earth's axis is an imaginary pole going right through the center of Earth from "top" to "bottom." Earth spins around this pole, making one complete turn each day. That is why we have day and night, and why every part of Earth's surface gets some of each.
Earth has seasons because its axis doesn't stand up straight. Today, the north pole is tipped toward the Sun, and the south pole is tipped away from the Sun. The northern summer solstice is an instant in time when the north pole of the Earth points more directly toward the Sun than at any other time of the year. It marks the beginning of summer in the northern hemisphere and winter in the southern hemisphere.
To mark the beginning of summer, here are four ways to enjoy the many wonders of space throughout the season:
1. Spot the International Space Station
As the third brightest object in the sky, the International Space Station is easy to see if you know when to look up. Sign up to get alerts when the station is overhead: https://spotthestation.nasa.gov/. Visible to the naked eye, it looks like a fast-moving plane only much higher and traveling thousands of miles an hour faster!
2. Treat your ears to space-related podcasts
From our “Gravity Assist” podcast that takes you on a journey through the solar system (including the Sun!) to our “NASA in Silicon Valley” podcast that provides an in-depth look at people who push the boundaries of innovation, we have podcast offerings that will suit everyone’s taste. For a full list of our podcasts, visit https://www.nasa.gov/podcasts.
3. Explore space by downloading NASA apps
Our apps for smartphones, tablets and digital media players showcase a huge collection of space-related content, including images, videos on-demand, NASA Television, mission information, feature stories, satellite tracking and much more. For a full list of our apps available for download, visit https://www.nasa.gov/connect/apps.html
4. Watch launches to space
This summer, we have multiple opportunities for you to take in the sights of spacecraft launches that will deliver supplies and equipment to astronauts living aboard the International Space Station, explore our solar system and much more. Be sure to mark your calendar for upcoming launches and landings!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.
The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won't go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!
The only people they will talk with regularly are mission control and each other.
The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.
What will they be doing?
Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it.
A few other details:
The crew follows a timeline that is similar to one used for the ISS crew.
They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.
They will be growing and taking care of plants and brine shrimp, which they will analyze and document.
But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission.
Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.
Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.
Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.
In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.
Mission success! After a simulated mission to an asteroid, the crew “splashed down” around 10:30 p.m. EST on Wednesday, Feb. 24 and exited the habitat for the first time in 30 days.
Want a full, 360 degree look at HERA? Check out and explore the inside of the habitat.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A Virginia native, Andre Douglas served in the U.S. Coast Guard as a naval architect and salvage engineer. Douglas later worked as an engineer for Johns Hopkins University Applied Physics Laboratory on NASA's DART mission to redirect an asteroid. https://go.nasa.gov/48FBlam
Make sure to follow us on Tumblr for your regular dose of space!
When you think about Earth Day, you might think about planting trees or picking up garbage. But right now, as a lot of us are staying inside to stay safe, we’ve got you covered for Earth Day at Home with ways to appreciate our beautiful home planet from your couch.
Our new NeMo-Net app lets you do that while playing a game!
Worldview lets you choose any location on Earth and see it the way our satellites do – in natural color, lit by electric lights at night, or in infrared, highlighting fires around the globe.
On April 22 -- Earth Day -- we’ll have a host of activities you can participate in. Scientists will share their research from their own homes, including messages from astronauts living on the International Space Station! Hear stories from a trip to Earth’s most remote location: Antarctica, including what happens when the chocolate goes missing on a weeks-long excursion. We’ll even have a new episode of NASA Science Live sharing some of what we’re doing to make our work more sustainable.
We’ll be sharing Earth Day from our homes with #EarthDayAtHome on Twitter, Instagram, Facebook and with a Tumblr Answer Time right here! Follow along, and participate, as we share our love for our home planet with you.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Is your only job helping astronauts and satellites or does NASA do other thing too?
As our planet warms, sea levels are rising around the world – and are doing so at an accelerating rate. Currently, global sea level is rising about an eighth of an inch every year.
That may seem insignificant, but it’s 30% more than when NASA launched its first satellite mission to measure ocean heights in 1992 – less than 30 years ago. And people already feel the impacts, as seemingly small increments of sea level rise become big problems along coastlines worldwide.
Higher global temperatures cause our seas to rise, but how? And why are seas rising at a faster and faster rate? There are two main reasons: melting ice and warming waters.
The Ice We See Is Getting Pretty Thin
About two-thirds of global sea level rise comes from melting glaciers and ice sheets, the vast expanses of ice that cover Antarctica and Greenland. In Greenland, most of that ice melt is caused by warmer air temperatures that melt the upper surface of ice sheets, and when giant chunks of ice crack off of the ends of glaciers, adding to the ocean.
In Antarctica – where temperatures stay low year-round – most of the ice loss happens at the edges of glaciers. Warmer ocean water and warmer air meet at the glaciers’ edges, eating away at the floating ice sheets there.
NASA can measure these changes from space. With data from the Ice, Cloud and land Elevation Satellite-2, or ICESat-2, scientists can measure the height of ice sheets to within a fraction of an inch. Since 2006, an average of 318 gigatons of ice per year has melted from Greenland and Antarctica’s ice sheets. To get a sense of how big that is: just one gigaton is enough to cover New York City’s Central Park in ice 1,000 feet deep – almost as tall as the Chrysler Building.
With the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission -- a partnership with the German Research Centre for Geosciences -- scientists can calculate the mass of ice lost from these vast expanses across Greenland and Antarctica.
It’s not just glaciers in Antarctica and Greenland that are melting, though. Nearly all glaciers have been melting in the last decade, including those in Alaska, High Mountain Asia, South America, and the Canadian Arctic. Because these smaller glaciers are melting quickly, they contribute about the same amount to sea level rise as meltwater from massive ice sheets.
The Water’s Getting Warm
As seawater warms, it takes up more space. When water molecules get warmer, the atoms in those molecules vibrate faster, expanding the volume they take up. This phenomenon is called thermal expansion. It’s an incredibly tiny change in the size of a single water molecule, but added across all the water molecules in all of Earth’s oceans – a single drop contains well over a billion billion molecules – it accounts for about a third of global sea level rise.
So Much to See
While sea level is rising globally, it’s not the same across the planet. Sea levels are rising about an eighth of an inch per year on average worldwide. But some areas may see triple that rate, some may not observe any changes, and some may even experience a drop in sea level. These differences are due to ocean currents, mixing, upwelling of cold water from the deep ocean, winds, movements of heat and freshwater, and Earth’s gravitational pull moving water around. When ice melts from Greenland, for example, the drop in mass decreases the gravitational pull from the ice sheet, causing water to slosh to the shores of South America.
That’s where our view from space comes in. We’re launching Sentinel-6 Michael Freilich, an international partnership satellite, to continue our decades-long record of global sea level rise.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Photos of the eclipse are okay and just as neat to look at? Will NASA post to twitter. Will the Space station take photos also?
Yes, we will be posting a ton of photos and you can add to them as well! https://www.flickr.com/groups/nasa-eclipse2017/ I agree, the photos are incredibly cool!
What specific area of space research most excites you? Could be something being explored currently, or something you would like to see work done on in the future.
My twin sister worked on genetics in graduate school, and she continues to research ideas in genetics. She comes up with a lot of great ideas for what we can study in space, especially now since genetics is a focus on the space station. I’m looking forward to continuing with the genetics experiments and seeing what we learn.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts