Hi!! I’m a high school sophomore and I love the work NASA does! I’ve always wondered, what’s an astronaut’s first thought when leaving earth? What kind of experiences do you leave the expedition with? Thanks! :) - Lauren
We sit on the precipice of a golden age of space exploration — a renaissance of space science and technology. Every day, our missions send millions of bits of data to Earth, unraveling long-held mysteries about the universe, our solar system and even our own planet. But what makes it all possible?
Today we debut a new, limited edition podcast called “The Invisible Network.” It brings you a side of NASA you may have never seen or heard of before — oft overlooked technologies crucial to spaceflight and humanity’s ambitions among the stars.
Communications is the vital link between Earth and space. A collection of far-flung ground stations enabled the Apollo missions: our first steps on the Moon; the Voyager missions: our first brushes with interstellar space; and supported the earliest space and Earth science missions, expanding our knowledge of the stars and of ourselves.
Today, our communications networks are vastly different than those that supported Apollo. Tomorrow’s networks will be even more advanced.
“The Invisible Network” explores technological innovations guiding us into the future. These seemingly un-sexy feats of engineering will allow us to return to the Moon, journey to Mars and venture ever-further into the unknown.
Artist’s rendering of the upcoming Orion missions.
Our podcast’s title, "The Invisible Network," comes from author and former NASA engineer Sunny Tsiao’s book, “Read You Loud and Clear,” published in 2008. Tsiao notes that our communications and tracking programs are often described as “invisible.” Infrastructures, he writes, are seldom recognized, except when they fall short.
If our networks are invisible, perhaps it’s because they work so well.
We hope you’ll join us on our journey into The Invisible Network. Subscribe to the show and share us with a friend. For more information visit nasa.gov/invisible or nasa.gov/scan.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
NASA Chief Scientist…pretty cool title, right? The office represents all the scientific endeavors at NASA, ensuring they’re aligned with and fulfilling the administration’s science goals.
After more than three years as Chief Scientist, Ellen Stofan is departing for new adventures. We caught up with her to ask 10 questions about her role and what she will miss most after she leaves the agency. Take a look…
1) What were some of your expectations coming in as NASA’s chief scientist?
When I started as Chief Scientist, all I knew is that I would be science advisor to the Administrator, Charlie Bolden, overseeing the agency’s science portfolio. What I did not realize at the time was the degree that I would be impressed by him.
Charlie is an amazing leader who deeply cares about each and every person at this agency. He makes everyone feel valued. That is why NASA has just been voted by our employees for the fifth straight year as the Best Place to Work in the federal government!
2) What do you think it the next big thing for NASA science?
Looking across our science portfolio, I think the most exciting area, which actually connects everything we do, is the search for life beyond Earth. People have long wondered if we are alone, and we are now actually going to answer that question in the next few decades. We are exploring Mars, where it is very likely that life evolved at around the same time life evolved here on Earth. Conditions on Mars deteriorated after about a billion years, so life either went underground, or became extinct. It will likely take future Mars astronauts to find the best evidence of Mars life.
We also are planning to explore the ocean worlds of the outer solar system, like Europa, where we might find life in subsurface oceans. Beyond our solar system, the thousands of planets discovered by the Kepler Space Telescope have made me very optimistic that we are close to finding an Earth 2.0—though that will take us a little longer.
3) NASA science rewrites textbooks all the time. What is something you've seen here that has the potential to occur in the future that will change the textbooks for kids of tomorrow?
For kids 16 and under today, for every day of their life, we have been living and working in space on board the International Space Station. Now we are ready to take that next step in the coming decade, to move humans beyond low-Earth orbit where we have been for such a long time, out to the vicinity of the moon and then on to Mars.
These kids are the “Mars generation,” and the exploration of Mars will change our outlook in profound ways, from looking back at Earth -- that will just look like another star -- to finding evidence of life beyond Earth. So it will not just change science textbooks, it will change how we look at ourselves when we become a multi-planetary species.
4) Behind every pretty space image is a team of scientists who analyze all the data to make the discovery happen. What do you wish the public knew about the people and work that goes into each of those pretty pictures?
It really does take a team. When I go out and talk to school kids, I tell them learning how to be a good member of a team is so important in life. You need to learn to be a leader and a follower, and above all a listener. Our teams at NASA are becoming more and more diverse, which is incredibly important. If everyone looks the same and comes from the same background, they are likely to approach problems the same way. And when you are trying to do tough things -- from addressing climate change to sending humans to Mars -- you need the best team, which means a diverse team.
5) We have a lot of opportunities for citizen science. What’s one opportunity you wish everyone knew about that they could get involved with at NASA?
Go to www.nasa.gov/solve where you can find all kinds of great opportunities to join us at NASA in searching for planets around other stars, exploring Mars, helping us gather data about this planet, and tackling technology challenges. We really are stronger together, and getting the public involved in what we do is helping us get more good science every day. Even more importantly, it lets people know that science is fun!
6) What changes did you make at the agency while you were there?
As Chief Scientist, I got to work on a lot of fun challenges, from our strategy on how to get humans to Mars, to learning about and promoting the research we do every day on the International Space Station. But one of the things that I am most proud of is that, working with my team, NASA now collects voluntary demographic data on all of our grant proposals. Implicit or unconscious bias is all around us; we may act on deep-seated biases that we don’t even know we have. The first step in dealing with bias is seeing if you have a problem, and that is what the data collection will tell us.
7) You worked a lot with kids as the agency’s Chief Scientist. How important do you feel STEM education is for NASA?
We need the next generation of scientists, doctors, computer programmers, technologists and engineers, and NASA provides the inspiration and hands-on activities that help get kids interested in science. Because of climate change, we are facing rising sea levels, changing patterns of agriculture, and changing weather. We need good engineers and scientists to help us mitigate the effects of climate change and reduce carbon emissions.
On top of that, we live in a society that is dependent on technology; I don’t think most of us can go very long without checking our smartphones. But as technology becomes more complex, we need everyone in society to have at least a basic understanding of it, and that’s where the importance of STEM education comes in. We are ALL consumers of science and technology. We all need to be informed consumers.
8) What solar system destination are you still most excited/eager for NASA to still go explore?
As a planetary geologist, I am most excited by one of the ocean worlds of the outer solar system. Titan, one of Saturn’s moons, is an amazing little world where it rains, and the liquid forms rivers, lakes and seas. But this liquid is actually liquid methane and ethane --basically gasoline, rather than water -- due to the extremely cold temperatures out by Saturn.
Titan is an excellent place to explore to help us better understand how oceans and atmospheres interact, and maybe even understand more about the limits of life. We think water is critical to the evolution of life, but Titan may tell us that having a liquid is the most important factor.
9) What will you miss most?
It’s the people of NASA whom I will miss the most. Everyone I work with is so committed to the mission of this agency—pushing back the frontiers of science and technology to accomplish great things for the nation. NASA represents the best of this country. We demonstrate that with hard work and determination, we can explore the universe, our galaxy, our solar system and our home planet.
Our partnerships with other space agencies from around the world and with the private sector here have shown me that great teams accomplish great things. I like to say that NASA is the keeper of the future—we don’t just wait for the future to happen. We work to create it every day.
10) In your opinion, after seeing everything you've seen here, why should people care about the science at NASA?
At NASA, we gather the data to help answer the most fundamental and profound questions: Where did we come from? How does our planet and our universe work? What is the fate of our planet? It is only by exploring, by making measurements, by answering scientific questions that we can move forward as a society. And in doing so, we push technology and engineering in ways that benefit us every day right here on Earth.
NASA makes measurements that show how the sea level is rising, how Arctic ice is melting, and how weather patterns are changing. We also gather data to help farmers grow more crops using less water, help understand our water resources, and do the research to improve forecasting. These data keep us secure and improve the quality of life on Earth every day.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Recent University of Idaho graduate Hannah Johnson and NASA’s STEM on Station activity Manager Becky Kamas answered your questions about our Student Payload Opportunity with Citizen Science (SPOCS).
Checkout their full Answer Time.
SPOCS helps fund student experiments and launches them to the International Space Station to conduct research. Learn more about SPOCS and this year’s student teams building experiments for space HERE.
If today’s Answer Time got you fired up, HERE are other ways you can get involved with NASA as a student. We have contests, challenges, internships, games, and more!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Dr. Erika Podest is a scientist with the Carbon Cycle and Ecosystems Group in our Jet Propulsion Laboratory’s Earth Science Division and Visiting Associate Researcher in the Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) at UCLA. Her research entails using satellite images to study Earth’s ecosystems specifically related to wetlands and boreal forests and how they are being affected by climate change.
Erika took time from studying our home planet to answer questions about her life and career! Get to know our Earth Scientist:
I am inspired by the beauty of nature, its perfection and by the peace it brings me. My motivation is to make a positive impact on our planet by better understanding it and caring for it.
I was born and raised in Panama, which is a country with an exuberant nature. Since I can remember, I was always surrounded by nature because my father was an adventurer who loved the outdoors and always took me with him to go exploring or simply to enjoy a nice relaxing day outside. This led me to develop a deep sense of appreciation, respect, and curiosity for nature, which sparked my interest to learn about it and pursue a career in Earth Science.
Early in my college years I was training for my private pilot’s license and during my solo flights I would take pictures of features on the surface from the plane. I was always amazed at the details the pictures showed of the landscape that were not obvious from the ground. This was the first step towards discovering that there was a field for studying Earth from above, called remote sensing and consequently my Masters and Ph.D. were focused in this field.
I don’t think it is a matter of any one technology, discovery or policy. It is a combination of everything. Having an impact on climate change involves every level and direction, from the bottom up at the individual, grassroots and community level to the top down at the policy level. As individuals, I think it is important to educate ourselves about climate change (I suggest climate.nasa.gov). We all have the power to make a positive change by speaking up and making informed decisions about our consumptive habits.
Wetlands provide a vital role in carbon storage. Even though they cover about 5-8% of the Earth’s land surface, studies indicate that they contain a disproportionate amount of our planet’s total soil carbon, about 20-30%. In addition, they are like the arteries and veins of the landscape, acting as water sources and purifiers and helping in flood control. They also protect our shores and harbor large amounts of biodiversity.
Boreal forests are found in the uppermost northern hemisphere (Alaska, most of Canada, Russia, Scandinavia and northern Asia) and account for about 30% of the world’s forest cover. These forests lock up enormous amounts of carbon and help slow the increasing buildup of carbon dioxide in our atmosphere. In their peak growth phase during the northern spring and summer, the worldwide levels of carbon dioxide fall and the worldwide levels of oxygen rise.
It depends on the research trip. For example, one of my more recent ones was to the Peruvian Amazon where we went upriver on a boat for three weeks on a major tributary of the Amazon River called the Ucuyali River. I was with a team of eight researchers and we were studying the wetland ecosystems of the Pacaya-Samiria Natural Reserve, which entailed making vegetation measurements and assessing inundation extent to validate our scientific findings from satellite observations. We camped for most of the trip and a typical day entailed waking up at around 5:00 am with a symphony of sounds that emerged from the forest, including monkeys. We had breakfast and set off from base camp into the forest (~1 hour walk) to work an 8-9 hour day with a short lunch break (we had packed lunches) at noon. At the end of the day I’d be drenched in sweat, sunscreen, insect repellent, and dust and I’d bathe with water from the river, which was as brown as a milk chocolate bar. It was the most refreshing and cleansing feeling! The day would close with dinner followed with a discussion of the measurements to be collected the following day. Lights were out by 7:30 pm (which seemed like midnight) and I’d re-emerge myself into my tent in the dark tropical night surrounded by the sounds of the forest, until the next morning.
That it is important to be patient, humble and thankful.
Great question! I do not have any secrete skills or talents but I do have a couple of hobbies. I play the piano, though I am still a novice. I love windsurfing. It is an amazing feeling to skim over the water at fast speeds (I’m also an adrenaline junkie). Finally, I am fascinated by magic card tricks and whenever I have some free time I like to learn a new trick.
I enjoy constantly learning about our natural world and how it works. I also really enjoy communicating my work to students and to the general public. I find it especially rewarding when I can educate people and motivate students to consider careers in science.
Erika, thank you for your time and everything you do to keep our home planet safe!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What do you see in Jupiter's hazy atmosphere?
Our NASA JunoCam mission captured this look at the planet’s thunderous northern region during the spacecraft’s close approach to the planet on Feb. 17, 2020.
Some notable features in this view are the long, thin bands that run through the center of the image from top to bottom. Juno has observed these long streaks since its first close pass by Jupiter in 2016.
Image Credits: Image data: NASA / JPL / SwRI / MSSS Image Processing: Citizen Scientist Eichstädt
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
See that tiny blob of light, circled in red? Doesn’t look like much, does it? But that blob represents a feast big enough to feed a black hole around 30 million times the mass of our Sun! Scientists call these kinds of stellar meals tidal disruption events, and they’re some of the most dramatic happenings in the cosmos.
Sometimes, an unlucky star strays too close to a black hole. The black hole’s gravity pulls on the star, causing it to stretch in one direction and squeeze in another. Then the star pulls apart into a stream of gas. This is a tidal disruption event. (If you’re worried about this happening to our Sun – don’t. The nearest black hole we know about is over 1,000 light-years away. And black holes aren’t wild space vacuums. They don’t go zipping around sucking up random stars and planets. So we’re pretty safe from tidal disruption events!)
The trailing part of the stream gets flung out of the system. The rest of the gas loops back around the black hole, forming a disk. The material circling in the disk slowly drifts inward toward the black hole’s event horizon, the point at which nothing – not even light – can escape. The black hole consumes the gas and dust in its disk over many years.
Sometimes the black hole only munches on a passing star – we call this a partial tidal disruption event. The star loses some of its gas, but its own gravity pulls it back into shape before it passes the black hole again. Eventually, the black hole will have nibbled away enough material that the star can’t reform and gets destroyed.
We study tidal disruptions, both the full feasts and the partial snacks, using many kinds of telescopes. Usually, these events are spotted by ground-based telescopes like the Zwicky Transient Facility and the All-Sky Automated Survey for Supernovae network.
They alert other ground- and space-based telescopes – like our Neil Gehrels Swift Observatory (illustrated above) and the European Space Agency’s XMM-Newton – to follow up and collect more data using different wavelengths, from visible light to X-rays. Even our planet-hunting Transiting Exoplanet Survey Satellite has observed a few of these destructive wonders!
We’re also studying disruptions using multimessenger astronomy, where scientists use the information carried by light, particles, and space-time ripples to learn more about cosmic objects and occurrences.
But tidal disruptions are super rare. They only happen once every 10,000 to 100,000 years in a galaxy the size of our own Milky Way. Astronomers have only observed a few dozen events so far. By comparison, supernovae – the explosive deaths of stars – happen every 100 years or so in a galaxy like ours.
That’s why scientists make their own tidal disruptions using supercomputers, like the ones shown in the video here. Supercomputers allow researchers to build realistic models of stars. They can also include all of the physical effects they’d experience whipping ‘round a black hole, even those from Einstein’s theory of general relativity. They can alter features like how close the stars get and how massive the black holes are to see how it affects what happens to the stars. These simulations will help astronomers build better pictures of the events they observe in the night sky.
Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
A pod of curious dolphins added extra meaning and porpoise to the recovery of Crew-9′s SpaceX Dragon capsule and its four explorers shortly after splashdown. Inside the capsule were astronauts Nick Hague, Suni Williams, Butch Wilmore, and cosmonaut Aleksandr Gorbunov, who splashed down off the coast of Florida at 5:57pm ET (2127 UTC) on March 18, 2025, concluding their scientific mission to the International Space Station. See Crew-9 return from deorbit to splashdown in this video. (The dolphins appear at 1:33:56.)
This second, as you’re reading these words, trillions of tiny particles are hurtling toward you! No, you don’t need to brace yourself. They’re passing through you right now. And now. And now. These particles are called neutrinos, and they’re both everywhere in the cosmos and also extremely hard to find.
Neutrinos are fundamental particles, like electrons, so they can’t be broken down into smaller parts. They also outnumber all the atoms in the universe. (Atoms are made up of electrons, protons, and neutrons. Protons and neutrons are made of quarks … which maybe we’ll talk about another time.) The only thing that outnumbers neutrinos are all the light waves left over from the birth of the universe!
Credit: Photo courtesy of the Pauli Archive, CERN
Physicist Wolfgang Pauli proposed the existence of the neutrino, nearly a century ago. Enrico Fermi coined the name, which means “little neutral one” in Italian, because these particles have no electrical charge and nearly no mass.
Despite how many there are, neutrinos are really hard to study. They travel at almost the speed of light and rarely interact with other matter. Out of the universe’s four forces, ghostly neutrinos are only affected by gravity and the weak force. The weak force is about 10,000 times weaker than the electromagnetic force, which affects electrically charged particles. Because neutrinos carry no charge, move almost as fast as light, and don’t interact easily with other matter, they can escape some really bizarre and extreme places where even light might struggle getting out – like dying stars!
Through the weak force, neutrinos interact with other tiny fundamental particles: electrons, muons [mew-ons], and taus [rhymes with “ow”]. (These other particles are also really cool, but for right now, you just need to know that they’re there.) Scientists actually never detect neutrinos directly. Instead they find signals from these other particles. So they named the three types, or flavors, of neutrinos after them.
Neutrinos are made up of each of these three flavors, but cycle between them as they travel. Imagine going to the store to buy rocky road ice cream, which is made of chocolate ice cream, nuts, and marshmallows. When you get home, you find that it’s suddenly mostly marshmallows. Then in your bowl it’s mostly nuts. But when you take a bite, it’s just chocolate! That’s a little bit like what happens to neutrinos as they zoom through the cosmos.
Credit: CERN
On Earth, neutrinos are produced when unstable atoms decay, which happens in the planet’s core and nuclear reactors. (The first-ever neutrino detection happened in a nuclear reactor in 1955!) They’re also created by particle accelerators and high-speed particle collisions in the atmosphere. (Also, interestingly, the potassium in a banana emits neutrinos – but no worries, bananas are perfectly safe to eat!)
Most of the neutrinos around Earth come from the Sun – about 65 billion every second for every square centimeter. These are produced in the Sun’s core where the immense pressure squeezes together hydrogen to produce helium. This process, called nuclear fusion, creates the energy that makes the Sun shine, as well as neutrinos.
The first neutrinos scientists detected from outside the Milky Way were from SN 1987A, a supernova that occurred only 168,000 light-years away in a neighboring galaxy called the Large Magellanic Cloud. (That makes it one of the closest supernovae scientists have observed.) The light from this explosion reached us in 1987, so it was the first supernova modern astronomers were able to study in detail. The neutrinos actually arrived a few hours before the light from the explosion because of the forces we talked about earlier. The particles escape the star’s core before any of the other effects of the collapse ripple to the surface. Then they travel in pretty much a straight line – all because they don’t interact with other matter very much.
Credit: Martin Wolf, IceCube/NSF
How do we detect particles that are so tiny and fast – especially when they rarely interact with other matter? Well, the National Science Foundation decided to bury a bunch of detectors in a cubic kilometer of Antarctic ice to create the IceCube Neutrino Observatory. The neutrinos interact with other particles in the ice through the weak force and turn into muons, electrons, and taus. The new particles gain the neutrinos’ speed and actually travel faster than light in the ice, which produces a particular kind of radiation IceCube can detect. (Although they would still be slower than light in the vacuum of space.)
In 2013, IceCube first detected high-energy neutrinos, which have energies up to 1,000 times greater than those produced by Earth’s most powerful particle collider. But scientists were puzzled about where exactly these particles came from. Then, in 2017, IceCube detected a high-energy neutrino from a monster black hole powering a high-speed particle jet at a galaxy’s center billions of light-years away. It was accompanied by a flash of gamma rays, the highest energy form of light.
But particle jets aren’t the only place we can find these particles. Scientists recently announced that another high-energy neutrino came from a black hole shredding an unlucky star that strayed too close. The event didn’t produce the neutrino when or how scientists expected, though, so they’ve still got a lot to learn about these mysterious particles!
Keep up with other exciting announcements about our universe by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Vice President Mike Pence visited our Kennedy Space Center in Florida today. While there, he delivered remarks to the workforce and toured our complex to see progress toward sending humans deeper into space, and eventually to Mars. He also had the opportunity to see our work with commercial companies to launch humans from U.S. soil to the International Space Station.
Did you know that pi is involved nearly anywhere you look? We’re not talking about your favorite pastry! Pi (also written as the Greek letter 𝞹, or the number 3.14159...) is an irrational number, which means it can’t be written as a simple fraction like ½. It is the ratio of a circle’s circumference (the distance around its edge) to its diameter (the distance across it) and will always be the same number, regardless of the circle’s size. Here are some places you can find pi in the universe around us!
Our Transiting Exoplanet Survey Satellite, TESS, watches slices of the sky in its hunt for worlds outside our solar system — how many exoplanets are in its night-sky pie? Last July, TESS scientists created a mosaic of 208 images of the southern sky. At that time, it contained 29 confirmed and 1,000 possible exoplanets, and we’re still studying the data to find more. Since this awe-inspiring image is of the southern hemisphere (or half of a 3D circle), there will always be pi! Every slice contains something delicious for scientists to study.
Pi recently played a crucial role in new discoveries about Alpha Draconis, a well-studied pair of stars. After discovering these stars regularly eclipse each other, pi helped scientists learn more about them. Scientists detected the eclipses while monitoring the brightness of Alpha Draconis for periodic dips that could’ve been caused by planets passing between the star and us. Instead of a planet, though, researchers found that its smaller partner in crime was passing in between us and the larger star for about six hours at a time! 💫
Pi comes in handy as we learn more about these two stars. Knowing the percentage of the decrease in Alpha Draconis’ light and the formula for the area of a circle (A=𝞹r2 — or area equals pi times the square of the circle's radius), scientists can predict the sizes of both stars. Because stars typically orbit in an elliptical (or oval) shape, pi also helps scientists use the detection of these eclipses to figure out the orbits of the two stars!
So far we’ve seen pi in many places! But it's also interesting to look at where pi can't be found! We mentioned earlier that many orbit calculations involve pi … but not every one does! Pi does not factor into calculations of hyperbolic orbits — orbits that aren't complete, or don't return to where they started — the same way that it does with elliptical orbits! This is most commonly seen with comets. While many comets orbit normally in our solar system, some oddballs just pass through, like the interstellar ‘Oumuamua that zipped passed us in 2017. ☄️
Perhaps the most popular place you may find pi is in the shape of a typical pie! While NASA’s Fermi Gamma-ray Space Telescope studies gamma-rays, and not blueberries, we think this cool Fermi pie is worth sharing for Pi Day!
Find more ways scientists look up at the night sky and use pi here. And now, don’t be irrational, and go have some pi(e)! 🥧
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts