Scrollr

Experience Tumblr like never before

Aero - Blog Posts

4 years ago

Laying the Groundwork for a New Generation of Commercial Supersonic Aircraft

Cabin crew, prepare for takeoff. Engines roar; speed increases. You sip a cold beverage as the aircraft accelerates quietly past Mach 1 or around 600 mph. There’s no indication you’re flying over land faster than the speed of sound except when you glance at your watch upon arrival and see you’ve reached your destination in half the time. You leisurely walk off the plane with ample time to explore, finish a final report or visit a familiar face. This reality is closer than you think.

image

We’re on a mission to help you get to where you want to go in half the time. Using our single-pilot X-59 Quiet SuperSonic Technology (QueSST) research aircraft, we will provide rule-makers the data needed to lift current bans on faster-than-sound air travel over land and help enable a new generation of commercial supersonic aircraft.

image

The X-59 QueSST is unique in shape. Each element of the aircraft’s design will help reduce a loud sonic boom, typically produced by conventional supersonic aircraft, to a gentle sonic thump, making it quieter for people on the ground. To prove the quiet technology works, we will fly the X-59 over select U.S. communities to gauge the public’s response to the sound.

image

We are working with Lockheed Martin in Palmdale, California, to manufacture the X-59 and are making significant progress, despite the pandemic.

Laying The Groundwork For A New Generation Of Commercial Supersonic Aircraft

We finished the majority of work on the wing and closed its interior, marking the halfway point on construction of the aircraft. 

Laying The Groundwork For A New Generation Of Commercial Supersonic Aircraft

The X-59 team at Lockheed Martin completed the final touches by fastening skins to the wing. A special sealant is applied so that fuel can be carried in the wings of the aircraft.

Laying The Groundwork For A New Generation Of Commercial Supersonic Aircraft

Moving at a steady pace, technicians continue to work on many parts of the aircraft simultaneously. The forebody section of the aircraft will carry the pilot and all the avionics needed to fly the aircraft.

image

Because of the X-59’s long nose, the pilot will rely on an eXternal Vision System (XVS), rather than a window, for forward-facing visibility. The XVS will display fused images from an advanced computing system and cameras mounted on the upper and lower part of the aircraft’s nose.

image

The aft part of the aircraft will hold an F414 GE engine and other critical systems. Unlike typical aircraft, the engine inlet will be located on the upper surface of the X-59 and is one of many features that will help reduce the noise heard on the ground.

Laying The Groundwork For A New Generation Of Commercial Supersonic Aircraft

Over the next several months, the team will merge all three sections together. After final assembly in 2021, the X-59 will undergo numerous tests to ensure structural integrity of the aircraft and that ¬its components work properly. First flight of the aircraft will be in 2022 and community testing will start in 2024, making way for a new market of quiet commercial supersonic aircraft.

image

Want to learn more about the X-59 and our mission? Visit nasa.gov/X59. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
5 years ago

I want to pursue a career in aeronautics and want to get into NASA. Any advice?


Tags
6 years ago

NASA’s 60th Anniversary: The Leading Edge of Flight

Aeronautics is our tradition. For 60 years, we have advanced aeronautics, developed new technologies and researched aerodynamics. Our advancements have transformed the way you fly. We will continue to revolutionize flight. Since we opened for business on Oct. 1, 1958, our history tells a story of exploration, innovation and discoveries. The next 60 years, that story continues. Learn more: https://www.nasa.gov/60

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago
September 21, 2012: It’s Just Another Day In L.A. As The Space Shuttle Endeavour Passes Overhead On

September 21, 2012: It’s just another day in L.A. as the Space Shuttle Endeavour passes overhead on its way to LAX, the last stop before retirement at the California Science Center.


Tags
1 year ago
A color GIF looking down at the Ingenuity Mars Helicopter as it begins to spin its two counter-rotating blades. The small craft sits on red, rocky Martian terrain. There is red dust on the helicopter’s solar panel. Credit: NASA/JPL-Caltech/ASU

What We Learned from Flying a Helicopter on Mars

A color GIF of NASA's Ingenuity Mars Helicopter as it hovers slowly above the dusty, rocky Martian landscape. Credit: NASA/JPL-Caltech/ASU/MSSS

The Ingenuity Mars Helicopter made history – not only as the first aircraft to perform powered, controlled flight on another world – but also for exceeding expectations, pushing the limits, and setting the stage for future NASA aerial exploration of other worlds.

Built as a technology demonstration designed to perform up to five experimental test flights over 30 days, Ingenuity performed flight operations from the Martian surface for almost three years. The helicopter ended its mission on Jan. 25, 2024, after sustaining damage to its rotor blades during its 72nd flight.

So, what did we learn from this small but mighty helicopter?

We can fly rotorcraft in the thin atmosphere of other planets.

Ingenuity proved that powered, controlled flight is possible on other worlds when it took to the Martian skies for the first time on April 19, 2021.

Flying on planets like Mars is no easy feat: The Red Planet has a significantly lower gravity – one-third that of Earth’s – and an extremely thin atmosphere, with only 1% the pressure at the surface compared to our planet. This means there are relatively few air molecules with which Ingenuity’s two 4-foot-wide (1.2-meter-wide) rotor blades can interact to achieve flight.

Ingenuity performed several flights dedicated to understanding key aerodynamic effects and how they interact with the structure and control system of the helicopter, providing us with a treasure-trove of data on how aircraft fly in the Martian atmosphere.

Now, we can use this knowledge to directly improve performance and reduce risk on future planetary aerial vehicles.

NASA’s Ingenuity Mars Helicopter took this black-and-white photo while hovering over the Martian surface on April 19, 2021, during the first instance of powered, controlled flight on another planet. It used its navigation camera, which is mounted in its fuselage and pointed directly downward to track the ground during flight. The image shows the shadow of the Ingenuity Mars Helicopter on the surface of Mars. The black shadow of the helicopter is very crisp and clear against the white backdrop of the Martian sandy surface. Its wing-shaped rotors jut out from the sides of its square body, and from each corner is a thin leg that has a small ball shape at the end. Credit: NASA/JPL-Caltech

Creative solutions and “ingenuity” kept the helicopter flying longer than expected.

Over an extended mission that lasted for almost 1,000 Martian days (more than 33 times longer than originally planned), Ingenuity was upgraded with the ability to autonomously choose landing sites in treacherous terrain, dealt with a dead sensor, dusted itself off after dust storms, operated from 48 different airfields, performed three emergency landings, and survived a frigid Martian winter.

Fun fact: To keep costs low, the helicopter contained many off-the-shelf-commercial parts from the smartphone industry - parts that had never been tested in deep space. Those parts also surpassed expectations, proving durable throughout Ingenuity’s extended mission, and can inform future budget-conscious hardware solutions.

A split screen image. The left side of the image shows a close-up photo of an Ingenuity team member inspecting NASA's Ingenuity Mars Helicopter while it was still here on Earth. Across the image are bold white letters that spell out "DREAM." The right side of the image shows a close-up photo of Ingenuity after it landed on Mars. The helicopter sits on the dusty, rocky surface of the planet. Across the image are bold white letters that spell out "REALITY." Credit:NASA/JPL-Caltech

There is value in adding an aerial dimension to interplanetary surface missions.

Ingenuity traveled to Mars on the belly of the Perseverance rover, which served as the communications relay for Ingenuity and, therefore, was its constant companion. The helicopter also proved itself a helpful scout to the rover.

After its initial five flights in 2021, Ingenuity transitioned to an “operations demonstration,” serving as Perseverance’s eyes in the sky as it scouted science targets, potential rover routes, and inaccessible features, while also capturing stereo images for digital elevation maps.

Airborne assets like Ingenuity unlock a new dimension of exploration on Mars that we did not yet have – providing more pixels per meter of resolution for imaging than an orbiter and exploring locations a rover cannot reach.

A color-animated image sequence of NASA’s Mars Perseverance rover shows the vehicle on Mars's red, dusty surface. The six-wheeled rover’s camera “head” faces the viewer and then turns to the left, where, on the ground, sits the small Ingenuity Mars Helicopter. Credit: NASA/JPL-Caltech/MSSS

Tech demos can pay off big time.

Ingenuity was flown as a technology demonstration payload on the Mars 2020 mission, and was a high risk, high reward, low-cost endeavor that paid off big. The data collected by the helicopter will be analyzed for years to come and will benefit future Mars and other planetary missions.

Just as the Sojourner rover led to the MER-class (Spirit and Opportunity) rovers, and the MSL-class (Curiosity and Perseverance) rovers, the team believes Ingenuity’s success will lead to future fleets of aircraft at Mars.

In general, NASA’s Technology Demonstration Missions test and advance new technologies, and then transition those capabilities to NASA missions, industry, and other government agencies. Chosen technologies are thoroughly ground- and flight-tested in relevant operating environments — reducing risks to future flight missions, gaining operational heritage and continuing NASA’s long history as a technological leader.

You can fall in love with robots on another planet.

Following in the tracks of beloved Martian rovers, the Ingenuity Mars Helicopter built up a worldwide fanbase. The Ingenuity team and public awaited every single flight with anticipation, awe, humor, and hope.

Check out #ThanksIngenuity on social media to see what’s been said about the helicopter’s accomplishments.

Learn more about Ingenuity’s accomplishments here. And make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
Imagine Going To Your Manufacturer And Being Like, Alright. Hear Me Out. We’re Doing A Super Ultra

imagine going to your manufacturer and being like, alright. hear me out. we’re doing a super ultra double plane and its gonna be so fucking powerful


Tags
1 year ago
Head-Up Displays (HUD) In Aircrafts
Head-Up Displays (HUD) In Aircrafts
Head-Up Displays (HUD) In Aircrafts
Head-Up Displays (HUD) In Aircrafts
Head-Up Displays (HUD) In Aircrafts
Head-Up Displays (HUD) In Aircrafts

Head-Up Displays (HUD) in aircrafts

A HUD is a transparent screen that displays flight information in the pilot's line of sight, allowing them to maintain focus on the outside environment. This technology enhances safety and situational awareness by reducing the need for pilots to look away from their forward view to check instrument readings.


Tags
1 year ago
I Find This Antonov An-74 Plane Hilarious. Not Just Because Of The Weird Engine Placement, Everyone Finds

I find this Antonov An-74 plane hilarious. Not just because of the weird engine placement, everyone finds that hilarious. This (and the related AN-72) are nicknamed "Cheburashka", after this cartoon character:

I Find This Antonov An-74 Plane Hilarious. Not Just Because Of The Weird Engine Placement, Everyone Finds

But no, the even funnier thing, to me, is how they've labeled this plane. Lemme zoom in:

I Find This Antonov An-74 Plane Hilarious. Not Just Because Of The Weird Engine Placement, Everyone Finds

THEY PUT THE PLANE'S FAX NUMBER ON IT

who sees a fucking plane and goes "hey, maybe I should send that plane a fax"?


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags