Did Somebody Say Space Laser?

Did somebody say space laser?

We’re set to launch ICESat-2, our most advanced laser instrument of its kind, into orbit around Earth on Sept. 15. The Ice, Cloud and land Elevation Satellite-2 will make critical observations of how ice sheets, glaciers and sea ice are changing over time, helping us better understand how those changes affect people where they live. Here’s 10 numbers to know about this mission:

image

One Space Laser

There’s only one scientific instrument on ICESat-2, but it’s a marvel. The Advanced Topographic Laser Altimeter System, or ATLAS, measures height by precisely timing how long it takes individual photons of light from a laser to leave the satellite, bounce off Earth, and return to ICESat-2. Hundreds of people at our Goddard Space Flight Center worked to build this smart-car-sized instrument to exacting requirements so that scientists can measure minute changes in our planet’s ice.

image

Sea ice is seen in front of Apusiaajik Glacier in Greenland. Credit: NASA/JPL-Caltech/Jim Round

Two Types of Ice

Not all ice is the same. Land ice, like the ice sheets in Greenland and Antarctica, or glaciers dotting the Himalayas, builds up as snow falls over centuries and forms compacted layers. When it melts, it can flow into the ocean and raise sea level. Sea ice, on the other hand, forms when ocean water freezes. It can last for years, or a single winter. When sea ice disappears, there is no effect on sea level (think of a melting ice cube in your drink), but it can change climate and weather patterns far beyond the poles.

image

3-Dimensional Earth

ICESat-2 will measure elevation to see how much glaciers, sea ice and ice sheets are rising or falling. Our fleet of satellites collect detailed images of our planet that show changes to features like ice sheets and forests, and with ICESat-2’s data, scientists can add the third dimension – height – to those portraits of Earth.

image

Four Seasons, Four Measurements

ICESat-2’s orbit will make 1,387 unique ground tracks around Earth in 91 days – and then start the same ground pattern again at the beginning. This allows the satellite to measure the same ground tracks four times a year and scientists to see how glaciers and other frozen features change with the seasons – including over winter.

image

532 Nanometer Wavelength

The ATLAS instrument will measure ice with a laser that shines at 532 nanometers – a bright green on the visible spectrum. When these laser photons return to the satellite, they pass through a series of filters that block any light that’s not exactly at this wavelength. This helps the instrument from being swamped with all the other shades of sunlight naturally reflected from Earth.

image

Six Laser Beams

While the first ICESat satellite (2003-2009) measured ice with a single laser beam, ICESat-2 splits its laser light into six beams – the better to cover more ground (or ice). The arrangement of the beams into three pairs will also allow scientists to assess the slope of the surface they’re measuring.

image

Seven Kilometers Per Second

ICESat-2 will zoom above the planet at 7 km per second (4.3 miles per second), completing an orbit around Earth in 90 minutes. The orbits have been set to converge at the 88-degree latitude lines around the poles, to focus the data coverage in the region where scientists expect to see the most change.

image

800-Picosecond Precision

All of those height measurements come from timing the individual laser photons on their 600-mile roundtrip between the satellite and Earth’s surface – a journey that is timed to within 800 picoseconds. That’s a precision of nearly a billionth of a second. Our engineers had to custom build a stopwatch-like device, because no existing timers fit the strict requirements.

image

Nine Years of Operation IceBridge

As ICESat-2 measures the poles, it adds to our record of ice heights that started with the first ICESat and continued with Operation IceBridge, an airborne mission that has been flying over the Arctic and Antarctic for nine years. The campaign, which bridges the gap between the two satellite missions, has flown since 2009, taking height measurements and documenting the changing ice.

image

10,000 Pulses a Second

ICESat-2’s laser will fire 10,000 times in one second. The original ICESat fired 40 times a second. More pulses mean more height data. If ICESat-2 flew over a football field, it would take 130 measurements between end zones; its predecessor, on the other hand, would have taken one measurement in each end zone.

image

And One Bonus Number: 300 Trillion

Each laser pulse ICESat-2 fires contains about 300 trillion photons! Again, the laser instrument is so precise that it can time how long it takes individual photons to return to the satellite to within one billionth of a second. 

Learn more about ICESat-2: https://www.nasa.gov/icesat-2

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

8 years ago

Asteroid Terms: Explained

There are interesting asteroid characters in our solar system, including an asteroid that has its own moon and even one that is shaped like a dog bone! Our OSIRIS-REx mission launches at 7:05 p.m. EDT today and will travel to asteroid Bennu.

image

Scientists chose Bennu as the target of the OSIRIS-REx mission because of its composition, size and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.

Our OSIRIS-REx mission will travel to Bennu and bring a small sample back to Earth for study.

image

When talking about asteroids, there are some terms scientists use that might not be in your typical vocabulary…but we’ll help with that!

Here are a few terms you should know:

Orbital Eccentricity: This number describes the shape of an asteroid’s orbit by how elliptical it is. For asteroids in orbit around the sun, eccentricity is a number between 0 and 1, with 0 being a perfectly circular orbit and 0.99 being a highly elliptical orbit.

Inclination: The angle, in degrees, of how tilted an asteroid’s orbit is compared to another plane of reference, usually the plane of the Earth’s orbit around the sun.

Orbital Period: The number of days it takes for an asteroid to revolve once around the sun. For example, the Earth’s orbital period is 365 days.

Perihelion Distance: The distance between an asteroid and the sun when the asteroid is closest to the sun.

Aphelion Distance: The distance between the asteroid and the sun when the asteroid is farthest away from the sun.

Astronomical unit: A distance unit commonly used to describe orbits of objects around the sun. The distance from the Earth to the sun is one astronomical unit, or 1 AU, equivalent to about 93 million miles or 150 million kilometers.

Diameter: A measure of the size of an asteroid. It is the length of a line from a point on the surface, through the center of the asteroid, extending out to the opposite surface. Irregularly shaped asteroids may have different diameters depending on which direction they are measured.

Rotation Period: The time it takes for an asteroid to complete one revolution around its axis of rotation. For example, the rotation period of the Earth is approximately 24 hours, or 1 day.

Spectral Type: The classification of an asteroid, based on a measurement of the light reflected by the asteroid. 

Asteroid Terms: Explained

Watch live launch coverage of OSIRIS-REx to asteroid Bennu starting at 5:30 p.m, on NASA TV: http://www.nasa.gov/nasatv 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

As an astronaut who has been on a spacewalk before, what does the all-woman spacewalk mean to you?


Tags
8 years ago

Friday Stroll? How About a Spacewalk?

On Friday, May 12, NASA astronauts Peggy Whitson and Jack Fischer will venture outside the International Space Station, into the vacuum of space, for a spacewalk.

image

Space Fact: This will be the 200th spacewalk performed on the space station!

You can watch their entire 6.5 hour spacewalk live online! (Viewing info below!) To tell the two astronauts apart in their bulky spacewalk suits, Whitson will be wearing the suit with red stripes, while Jack Fischer will have white stripes.

image

Space Fact: The first-ever spacewalk on the International Space Station was performed on Dec. 7, 1998.

For Peggy, this will be her ninth spacewalk! She actually holds the record for most spacewalks by a female astronaut. For Fischer, this is his first time in space, and will be his first spacewalk. You can see from the below Tweet, he’s pretty excited!

image

Once both astronauts venture outside the Quest airlock, their tasks will focus on:

Replacing a large avionic box that supplies electricity and data connections to the science experiments

Replacing hardware stored outside the station

Specifically, the ExPRESS Carrier Avionics, or ExPCA will be replaced with a unit delivered to the station last month aboard the Orbital ATK Cygnus cargo spacecraft.

image

Ever wonder how astronauts prepare and practice for these activities? Think about it, wearing a bulky spacesuit (with gloves!), floating in the vacuum of space, PLUS you have to perform complex tasks for a period of ~6.5 hours! 

In order to train on Earth, astronauts complete tasks in our Neutral Buoyancy Laboratory (NBL). It’s a gigantic pool with a full mock up of the International Space Station! Here’s a clip of astronauts practicing to install the ExPCA in that practice pool at Johnson Space Center in Houston. 

image

In addition, Whitson and Fischer will install a connector that will route data to the Alpha Magnetic Spectrometer and help the crew determine the most efficient way to conduct future maintenance on the cosmic ray detector.

image

The astronauts will also install a protective shield on the Pressurized Mating Adapter-3, which was moved in March. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

image

Finally, the duo will rig a new high-definition camera and pair of wireless antennas to the exterior of the outpost.

Watch the Spacewalk Live!

image

Live coverage will begin at 6:30 a.m. EDT, with spacewalk activities starting at 8 a.m. EDT. 

Stream the entire spacewalk live online at nasa.gov/live 

OR 

Watch live on the International Space Station Facebook page starting at 7:00 a.m. EDT

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Splish, Splash, Orion Takes a Bath

The Orion spacecraft is a capsule built to take humans farther than they’ve ever gone before, to deep space and eventually Mars. But before astronauts travel inside this new vehicle, we have to perform tests to ensure their safety.

image

One of these tests that we’ll talk about today simulates an ocean splashdown. Water impact testing helps us evaluate how Orion may behave when landing under its parachutes in different wind conditions and wave heights. The spacecraft has been undergoing a series of these tests at our Langley Research Center’s Hydro Impact Basin…which is our fancy way of saying pool.

image

The test capsule, coupled with the heat shield from Orion’s first spaceflight, swung like a pendulum into Langley’s 20-foot-deep basin on Aug. 25.

image

Inside the capsule were two test dummies – one representing a 105-pound woman and the other, a 220-pound man — each wearing spacesuits equipped with sensors. These sensors will provide critical data that will help us understand the forces crew members could experience when they splash down in the ocean.

This specific drop was the ninth in a series of 10 tests taking place at Langley’s Landing and Impact Research Facility. It was designed to simulate one of the Orion spacecraft’s most stressful landing scenarios, a case where one of the capsule’s three main parachutes fails to deploy. That would cause Orion to approach its planned water landing faster than normal and at an undesirable angle.

Under ideal conditions, the Orion capsule would slice into the water of the Pacific Ocean traveling about 17 miles per hour. This test had it hitting the pool at about 20 mph, and in a lateral orientation. Instead of being pushed down into their seats, astronauts in this scenario would splashdown to the side.

With this test’s success and one final drop in this series scheduled for mid-September, researchers have accumulated a lot of important information.

To find out more, visit nasa.gov or follow @nasaorion​ on Tumblr, Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

From Discovering the Secrets of the Universe to In-Space Servicing, We’ve Got The Tools for the Job

If you need to fix something on Earth, you could go to a store, buy the tools you need, and get started. In space, it’s not that easy.

image

Aside from the obvious challenges associated with space (like it being cold and there being no gravity), developing the right tools requires a great deal of creativity because every task is different, especially when the tools need to be designed from scratch. From the time an engineer dreams up the right tools to the time they are used in space, it can be quite a process.

On Nov. 15, astronauts Luca Parmitano and Drew Morgan began a series of spacewalks to repair an instrument called the Alpha Magnetic Spectrometer (AMS-2) on the exterior of the International Space Station. The first of four spacewalk focused on using specialized tools to remove shields and covers, to gain access to the heart of AMS to perform the repairs, and install a new cooling system.

image

The debris shield that covered Alpha Magnetic Spectrometer floats away toward Earth as astronaut Drew Morgan successfully releases it.

Once repaired, AMS will continue to help us understand more about the formation of the universe and search for evidence of dark matter and antimatter.

These spacewalks, or extravehicular activities (EVAs), are the most complex of their kind since the servicing of the Hubble Space Telescope. AMS is particularly challenging to repair not only because of the instrument’s complexity and sensitivity, but also because it was never designed to be fixed. Because of this design, it does not have the kinds of interfaces that make spacewalks easier, or the ability to be operated on with traditional multi-purpose tools. These operations are so complex, their design and planning has taken four years. Let’s take a look at how we got ready to repair AMS.

image

Thinking Outside of the (Tool) Box

When designing the tools, our engineers need to keep in mind various complications that would not come into play when fixing something on Earth. For example, if you put a screw down while you’re on Earth, gravity will keep it there — in space, you have to consistently make sure each part is secure or it will float away. You also have to add a pressurized space suit with limited dexterity to the equation, which further complicates the tool design.

image

In addition to regular space complications, the AMS instrument itself presents many challenges — with over 300,000 data channels, it was considered too complex to service and therefore was not designed to one day be repaired or updated if needed. Additionally, astronauts have never before cut and reconnected micro-fluid lines (4 millimeters wide, less than the width of the average pencil) during a spacewalk, which is necessary to repair AMS, so our engineers had to develop the tools for this big first. 

image

With all of this necessary out-of-the-box thinking, who better to go to for help than the teams that worked on the most well-known repair missions — the Hubble servicing missions and the space station tool teams? Building on the legacy of these missions, some of our same engineers that developed tools for the Hubble servicing missions and space station maintenance got to work designing the necessary tools for the AMS repair, some reworked from Hubble, and some from scratch. In total, the teams from Goddard Space Flight Center’s Satellite Servicing Projects Division, Johnson Space Center, and AMS Project Office developed 21 tools for the mission.

Designing and Building

Like many great inventions, it all starts with a sketch. Engineers figure out what steps need to be taken to accomplish the task, and imagine the necessary tools to get the job done.

From there, engineers develop a computer-aided design (CAD) model, and get to building a prototype. Tools will then undergo multiple iterations and testing with the AMS repair team and astronauts to get the design just right, until eventually, they are finalized, ready to undergo vibration and thermal vacuum testing to make sure they can withstand the harsh conditions of launch and use in the space environment. 

Hex Head Capture Tool Progression:

image

Hex Head Capture Tool Used in Space: 

image

Practice Makes Perfect

One of the reasons the AMS spacewalks have been four years in the making is because the complexity of the repairs required the astronauts to take extra time to practice. Over many months, astronauts tasked with performing the spacewalks practiced the AMS repair procedures in numerous ways to make sure they were ready for action. They practiced in:  

Virtual reality simulations:

image

The Neutral Buoyancy Laboratory:

image

The Active Response Gravity Offload System (ARGOS):

image

Astronauts use this testing to develop and practice procedures in space-like conditions, but also to figure out what works and doesn’t work, and what changes need to be made. A great example is a part of the repair that involves cutting and reconnecting fluid lines. When astronauts practiced cutting the fluid lines during testing here on Earth, they found it was difficult to identify which was the right one to cut based on sight alone. 

The tubes on the AMS essentially look the same.

image

After discussing the concern with the team monitoring the EVAs, the engineers once again got to work to fix the problem.

image

And thus, the Tube Cutting Guide tool was born! Necessity is the mother of invention and the team could not have anticipated the astronauts would need such a tool until they actually began practicing. The Tube Cutting Guide provides alignment guides, fiducials and visual access to enable astronauts to differentiate between the tubes. After each of eight tubes is cut, a newly designed protective numbered cap is installed to cover the sharp tubing.

image

Off to Space

image

With the tools and repair procedures tested and ready to go, they launched to the International Space Station earlier this year. Now they’re in the middle of the main event -- Luca and Drew completed the first spacewalk last Friday, taking things apart to access the interior of the AMS instrument. Currently, there are three other spacewalks scheduled over the course of a month. The next spacewalk will happen on Nov. 22 and will put the Tube Cutting Guide to use when astronauts reconnect the tubes to a new cooling system.

With the ingenuity of our tool designers and engineers, and our astronauts' vigorous practice, AMS will be in good hands.

image

Check out the full video for the first spacewalk. Below you can check out each of the tools above in action in space!

Debris Shield Worksite: 2:29:16 – Debris Shield Handling Aid 2:35:25 – Hex Head Capture Tool (first) 2:53:31 – #10 Allen Bit 2:54:59 – Capture Cages 3:16:35 – #10 Allen Bit (diagonal side) 3:20:58 – Socket Head Capture Tool 3:33:35 – Hex Head Capture Tool (last) 3:39:35 – Fastener Capture Block 3:40:55 – Debris Shield removal 3:46:46 – Debris Shield jettison

Handrail Installations: 4:00:53 – Diagonal Beam Handrail Install 4:26:09 – Nadir Vacuum Case Handrail Install 4:33:50 – Zenith Vacuum Case Handrail InstallVertical Support Beam (VSB)

Vertical Support Beam (VSB) Worksite: 5:04:21 – Zip Tie Cutter 5:15:27 – VSB Cover Handling Aid 5:18:05 – #10 Allen Bit 5:24:34 – Socket Head Capture Tool 5:41:54 – VSB Cover breaking 5:45:22 – VSB Cover jettison 5:58:20 – Top Spacer Tool & M4 Allen Bit 6:08:25 – Top Spacer removal 7:42:05 - Astronaut shoutout to the tools team


Tags
5 years ago

Are the rumors about the ozone layer being totally fixed true ? If yes , is it susceptible of being opened again ans if no, is it suspecte


Tags
5 years ago

Choose Your Champion: Tournament Earth 2020

Tournament Earth is here! We want YOU to help us choose our best Earth image.

image

Since 1999, NASA Earth Observatory has published 16,000+ images. To celebrate our 20th anniversary and the 50th anniversary of Earth Day, we want you to pick our all-time best image. Each week from March 23 to April 28, you can vote for your favorite images. Readers will narrow the field from 32 nominees down to one champion in a five-round knockout-style tournament.

The nominees are separated into four groups: Past Winners, Home Planet, Land & Ice, and Sea & Sky.

Past Winners

image

No, that is not an animation of the death star orbiting Earth. It is the winner of Tournament Earth in 2016– the Dark Side and the Bright Side. The image shows the fully illuminated far side of the Moon that is not visible from Earth. Other contenders in this category are a picture of a volcanic eruption plume, sands and seas in the Bahamas, and lightning seen from the Space Station.

Home Planet

image

This picture of the Twin Blue Marbles is the number one seed in our "Home Planet" category, but that doesn't mean it's going to take home the crown. It has stiff competition from the iconic photo of Earth rising to an epic total solar eclipse to our Earth at night.

image

Land & Ice

image

Are you a land lover or ice lover? If you don't know, you might found out by browsing the beautiful imagery in this category. Vote on scenes from the partially frozen North Caspian Sea (above) to lava flowing in Iceland between the Bardarbunga and Askja volcanoes (below).

image

Sea & Sky

image

Hurricanes, lightning, and volcanic explosions are just a few of the amazing captures from NASA satellites and astronauts in this category.

The model-based visual above shows an expansive view of the mishmash of particles that dance and swirl through the atmosphere. It shows tropical cyclones, dust storms, and fires spreading tiny particles throughout the atmosphere during one day in August 2018.

image

Our satellites also capture the fine mixing of particles and churning of tides in our rivers. The image above shows dissolved organic matter from forests and wetlands that stained the water dark brown near Rupert Bay. A similar process darkens tea.

Learn more about Tournament Earth in the video below.

See all of the images and vote now HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

Bend Your Mind With Special Relativity

image

Ever dreamed of traveling nearly as fast as light? Zipping across the universe to check out the sights seems like it could be fun. But, not so fast. There are a few things you should know before you jump into your rocket. At near the speed of light, the day-to-day physics we know on Earth need a few modifications. And if you’re thinking Albert Einstein will be entering this equation, you’re right!

image

We live our daily lives using what scientists call Newtonian physics, as in Isaac Newton, the guy who had the proverbial apple fall on his head. Imagine that you are on a sidewalk, watching your friend walk toward the front of a bus as it drives away. The bus is moving at 30 mph. Your friend walks at 3 mph. To you, your friend is moving at 33 mph — you simply add the two speeds together. (The 30 mph the bus is moving plus 3 mph that your friend is moving inside the bus.) This is a simple example of Newtonian physics.

However, imagine that your friend on the bus turns on a flashlight, and you both measure the speed of its light. You would both measure it to be moving at 670 million mph (or 1 billion kilometers per hour) — this is the speed of light. Even though the flashlight is with your friend on the moving bus, you still both measure the speed of light to be exactly the same. Suddenly you see how Einstein’s physics is different from Newton’s.

image

This prediction was a key part of Einstein’s special theory of relativity: The speed of light is the same for any observer, no matter their relative speed. This leads to many seemingly weird effects.  

Before talking about those surprising effects, it’s good to take a moment to talk about point of view. For the rest of this discussion, we’ll assume that you’re at rest — sitting in one spot in space, not moving. And your friend is on a rocket ship that you measure to be traveling at 90% the speed of light. Neither of you is changing speed or direction. Scientists give this a fancy name — an “inertial frame of reference.”

With the stage set, now we can talk about a couple of super-weird effects of traveling near the speed of light. Relativity messes with simple things like distance and time, doing stuff that might blow your mind!

image

Let’s say you have a stick that is 36 inches long (91 centimeters). Your friend on the rocket doesn’t know the stick’s length, so they measure it by comparing it to a ruler they have as they zoom past you. They find your stick is just 16 inches (40 centimeters) long — less than half the length you measured! This effect is called length contraction. And if they were moving even faster, your friend would measure your stick to be even shorter. The cool thing about relativity is that both of those measurements are right! We see these effects in particle physics with fast-moving particles.

If your friend was traveling to our nearest neighbor star, Proxima Centauri, how far would they think it was? From Earth, we measure Proxima Centauri to be 4.2 light-years away (where one light-year is the distance light travels in a year, or about 5.8 trillion miles). However, your friend, who is traveling at 90% the speed of light in the rocket, would measure the distance between Earth and Proxima Centauri to be just over 1.8 light-years.

That’s just length … let’s talk about time!

image

Now let’s say you and your friend on the rocket have identical synchronized clocks. When your friend reaches Proxima Centauri, they send you a signal, telling you how long their trip took them. Their clock says the trip took just over two years. Remember, they measure the distance to be 1.8 light-years. However, you would see that your clock, which stayed at rest with you, says the trip took 4.7 years — more than twice as long!

This effect is called time dilation — time on moving clocks appears to tick slower.

image

None of this accounts for your friend accelerating their rocket or stopping at Proxima Centauri. All of this math gets more complicated if you and your friend were speeding up, slowing down, or changing directions. For instance, if your friend slowed down to stop at Proxima Centauri, they would have aged less than you on their trip!

Now you’re ready for a few tips on near-light-speed travel! Watch the video below for more.

Now, if you need to relax a bit after this whirlwind, near-light-speed trip, you can grab our coloring pages of scenes from the video. And if you enjoyed the trip, download a postcard to send to a friend. Finally, if you want to explore more of the wonders of the universe, follow NASA Universe on Facebook and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Our Favorite Valentines Throughout the Universe

Today is Valentine’s Day. What better way to express that you love someone than with an intergalactic love gram? Check out some of our favorites and send them to all of your cosmic companions:

Your love is galactic

image

The Hubble Space Telescope revolutionized nearly all areas of astronomical research — and captured some truly lovely images. Here, a pair of intersecting galaxies swirl into the shape of a rose as a result of gravitational tidal pull. What type of roses are you getting for your love — red or galactic?

I think you’re n{ice}

image

IceBridge is the largest airborne survey of Earth’s polar ice ever flown. It captures 3-D views of Arctic and Antarctic ice sheets, ice shelves and sea ice. This lovely heart-shaped glacier feature was discovered in northwest Greenland during an IceBridge flight in 2017. Which of your lover’s features would you say are the coolest?

You’re absolutely magnetic

image

Even though we can't see them, magnetic fields are all around us. One of the solar system’s largest magnetospheres belongs to Jupiter. Right now, our Juno spacecraft is providing scientists with their first glimpses of this unseen force. Is your attraction to your loved one magnetic?

You’re MARS-velous

image

This heart-shaped feature on the Martian landscape was captured by our Mars Reconnaissance Orbiter. It was created by a small impact crater that blew darker material on the surface away. What impact has your loved one had on you?

I <3 you

image

From three billion miles away, Pluto sent a “love note” back to Earth, via our New Horizons spacecraft. This stunning image of Pluto's "heart" shows one of the world's most dominant features, estimated to be 1,000 miles (1,600 km) across at its widest point. Will you pass this love note on to someone special in your life?

Light of my life

image

Our Solar Dynamics Observatory keeps an eye on our closest star that brings energy to you and your love. The observatory helps us understand where the Sun's energy comes from, how the inside of the Sun works, how energy is stored and released in the Sun's atmosphere and much more. Who would you say is your ray of sunshine?

Do any of these cosmic phenomena remind you of someone in your universe? Download these cards here to send to all the stars in your sky.

Want something from the Red Planet to match your bouquet of red roses? Here is our collection of Martian Valentines.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

In Conversation with the Sun: Parker Solar Probe Communications

Our Sun powers life on Earth. It defines our days, nourishes our crops and even fuels our electrical grids. In our pursuit of knowledge about the universe, we’ve learned so much about the Sun, but in many ways we’re still in conversation with it, curious about its mysteries.

image

Parker Solar Probe will advance this conversation, flying through the Sun’s atmosphere as close as 3.8 million miles from our star’s surface, more than seven times closer to it than any previous spacecraft. If space were a football field, with Earth at one end and the Sun at the other, Parker would be at the four-yard line, just steps away from the Sun! This journey will revolutionize our understanding of the Sun, its surface and solar winds.

image

Supporting Parker on its journey to the Sun are our communications networks. Three networks, the Near Earth Network, the Space Network and the Deep Space Network, provide our spacecraft with their communications, delivering their data to mission operations centers. Their services ensure that missions like Parker have communications support from launch through the mission.

image

For Parker’s launch on Aug. 12, the Delta IV Heavy rocket that sent Parker skyward relied on the Space Network. A team at Goddard Space Flight Center’s Networks Integration Center monitored the launch, ensuring that we maintained tracking and communications data between the rocket and the ground. This data is vital, allowing engineers to make certain that Parker stays on the right path towards its orbit around the Sun.

image

The Space Network’s constellation of Tracking and Data Relay Satellites (TDRS) enabled constant communications coverage for the rocket as Parker made its way out of Earth’s atmosphere. These satellites fly in geosynchronous orbit, circling Earth in step with its rotation, relaying data from spacecraft at lower altitudes to the ground. The network’s three collections of TDRS over the Atlantic, Pacific and Indian oceans provide enough coverage for continuous communications for satellites in low-Earth orbit.

image

The Near Earth Network’s Launch Communications Segment tracked early stages of Parker's launch, testing our brand new ground stations’ ability to provide crucial information about the rocket’s initial velocity (speed) and trajectory (path). When fully operational, it will support launches from the Kennedy spaceport, including upcoming Orion missions. The Launch Communications Segment’s three ground stations are located at Kennedy Space Center; Ponce De Leon, Florida; and Bermuda. 

image

When Parker separated from the Delta IV Heavy, the Deep Space Network took over. Antennas up to 230 feet in diameter at ground stations in California, Australia and Spain are supporting Parker for its 24 orbits around the Sun and the seven Venus flybys that gradually shrink its orbit, bringing it closer and closer to the Sun. The Deep Space Network is delivering data to mission operations centers and will continue to do so as long as Parker is operational.

Near the Sun, radio interference and the heat load on the spacecraft’s antenna makes communicating with Parker a challenge that we must plan for. Parker has three distinct communications phases, each corresponding to a different part of its orbit.

When Parker comes closest to the Sun, the spacecraft will emit a beacon tone that tells engineers on the ground about its health and status, but there will be very little opportunity to command the spacecraft and downlink data. High data rate transmission will only occur during a portion of Parker’s orbit, far from the Sun. The rest of the time, Parker will be in cruise mode, taking measurements and being commanded through a low data rate connection with Earth.

image

Communications infrastructure is vital to any mission. As Parker journeys ever closer to the center of our solar system, each byte of downlinked data will provide new insight into our Sun. It’s a mission that continues a conversation between us and our star that has lasted many millions of years and will continue for many millions more.

For more information about NASA’s mission to touch the Sun: https://www.nasa.gov/content/goddard/parker-solar-probe

For more information about our satellite communications check out: http://nasa.gov/SCaN

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • blackmoondripping
    blackmoondripping liked this · 3 years ago
  • thelasttransmision
    thelasttransmision liked this · 4 years ago
  • naughtybodypillow
    naughtybodypillow liked this · 4 years ago
  • yani-mako-chan
    yani-mako-chan liked this · 4 years ago
  • banananograms
    banananograms liked this · 4 years ago
  • wilord1
    wilord1 liked this · 4 years ago
  • lightmatters
    lightmatters liked this · 4 years ago
  • alux-ulkan
    alux-ulkan reblogged this · 4 years ago
  • groberts22
    groberts22 liked this · 5 years ago
  • wondering-slave
    wondering-slave liked this · 6 years ago
  • miyamoto34
    miyamoto34 liked this · 6 years ago
  • shawn1965
    shawn1965 liked this · 6 years ago
  • fuckerofthestars
    fuckerofthestars reblogged this · 6 years ago
  • fuckerofthestars
    fuckerofthestars reblogged this · 6 years ago
  • fuckerofthestars
    fuckerofthestars liked this · 6 years ago
  • themissdreamingstories
    themissdreamingstories liked this · 6 years ago
  • pandameatbun
    pandameatbun liked this · 6 years ago
  • mahajanv702-blog
    mahajanv702-blog reblogged this · 6 years ago
  • bo-zen-blog
    bo-zen-blog reblogged this · 6 years ago
  • tc-be
    tc-be reblogged this · 6 years ago
  • tc-be
    tc-be liked this · 6 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 6 years ago
  • astra-peraspera
    astra-peraspera reblogged this · 6 years ago
  • fancygremlin
    fancygremlin reblogged this · 6 years ago
  • grasshopper28
    grasshopper28 liked this · 6 years ago
  • snooziep
    snooziep reblogged this · 6 years ago
  • gentianablue
    gentianablue reblogged this · 6 years ago
  • rosemagickk-blog
    rosemagickk-blog reblogged this · 6 years ago
  • toropiski
    toropiski reblogged this · 6 years ago
  • gentianablue
    gentianablue liked this · 6 years ago
  • goldsourcegold
    goldsourcegold liked this · 6 years ago
  • delightfulpaperpost
    delightfulpaperpost liked this · 6 years ago
  • neuralink25
    neuralink25 liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags