4 Little Known Women Who Made Huge Contributions To NASA

LaRue Burbank instructs her Data Systems and Analysis colleagues on the use of a computer.  She sits at a desk, pointing at a monitor. Her colleagues, two men, look over her right shoulder. Credit: NASA

LaRue Burbank, mathematician and computer, is just one of the many women who were instrumental to NASA missions.

4 Little Known Women Who Made Huge Contributions to NASA

Women have always played a significant role at NASA and its predecessor NACA, although for much of the agency’s history, they received neither the praise nor recognition that their contributions deserved. To celebrate Women’s History Month – and properly highlight some of the little-known women-led accomplishments of NASA’s early history – our archivists gathered the stories of four women whose work was critical to NASA’s success and paved the way for future generations.

LaRue Burbank: One of the Women Who Helped Land a Man on the Moon

LaRue Burbank was a trailblazing mathematician at NASA. Hired in 1954 at Langley Memorial Aeronautical Laboratory (now NASA’s Langley Research Center), she, like many other young women at NACA, the predecessor to NASA, had a bachelor's degree in mathematics. But unlike most, she also had a physics degree. For the next four years, she worked as a "human computer," conducting complex data analyses for engineers using calculators, slide rules, and other instruments. After NASA's founding, she continued this vital work for Project Mercury.

In 1962, she transferred to the newly established Manned Spacecraft Center (now NASA’s Johnson Space Center) in Houston, becoming one of the few female professionals and managers there.  Her expertise in electronics engineering led her to develop critical display systems used by flight controllers in Mission Control to monitor spacecraft during missions. Her work on the Apollo missions was vital to achieving President Kennedy's goal of landing a man on the Moon.

Eilene Galloway: How NASA became… NASA

Eilene Galloway in her home in Washington  on August 7, 2000. Photo from the collection of Herstory Interviews (1999-2002). Eilene Galloway sits in a cream-colored chair before a fireplace and bookshelf. Wearing a blue dress and suit jacket she looks towards the camera. In front of her on a desk sit multiple pieces of space legislation. Credit: NASA

Eilene Galloway wasn't a NASA employee, but she played a huge role in its very creation. In 1957, after the Soviet Union launched Sputnik, Senator Richard Russell Jr. called on Galloway, an expert on the Atomic Energy Act, to write a report on the U.S. response to the space race. Initially, legislators aimed to essentially re-write the Atomic Energy Act to handle the U.S. space goals. However, Galloway argued that the existing military framework wouldn't suffice – a new agency was needed to oversee both military and civilian aspects of space exploration. This included not just defense, but also meteorology, communications, and international cooperation.

Her work on the National Aeronautics and Space Act ensured NASA had the power to accomplish all these goals, without limitations from the Department of Defense or restrictions on international agreements. Galloway is even to thank for the name "National Aeronautics and Space Administration", as initially NASA was to be called “National Aeronautics and Space Agency” which was deemed to not carry enough weight and status for the wide-ranging role that NASA was to fill.

Barbara Scott: The “Star Trek Nerd” Who Led Our Understanding of the Stars

Barbara Scott (left) helps to plant a Moon Tree, a tree grown from a seed flown around the Moon, at the Goddard Visitor Center as William Mecca (center) and Dr. Robert Cooper (right) look on, 1977. This desaturated image features Barbara Scott in a professional dress and heels shoveling dirt around a sapling. Behind Scott, a small crowd of young women look on. In the far distance a line of trees blends with the horizon. Mecca wears a white lab coat; Cooper wears a suit jacket and dress pants. Credit: NASA

A self-described "Star Trek nerd," Barbara Scott's passion for space wasn't steered toward engineering by her guidance counselor. But that didn't stop her!  Fueled by her love of math and computer science, she landed at Goddard Spaceflight Center in 1977.  One of the first women working on flight software, Barbara's coding skills became instrumental on missions like the International Ultraviolet Explorer (IUE) and the Thermal Canister Experiment on the Space Shuttle's STS-3.  For the final decade of her impressive career, Scott managed the flight software for the iconic Hubble Space Telescope, a testament to her dedication to space exploration.

Dr. Claire Parkinson: An Early Pioneer in Climate Science Whose Work is Still Saving Lives

Dr. Claire Parkinson, 1999, posing with a sled dog at the North Pole during an expedition with NASA to Resolute Bay. Parkinson smiles, wears a large red winter coat with navy blue pants and pets the fluffy, majestic, and goodest sled dog sitting before her. In the background, other sled dogs are seen standing and sitting, and there is a single orange and navy-blue tent assembled in the background. The entirely of the background is dominated by the white snowy tundra of the North Pole. Credit: NASA

Dr. Claire Parkinson's love of math blossomed into a passion for climate science. Inspired by the Moon landing, and the fight for civil rights, she pursued a graduate degree in climatology.  In 1978, her talents landed her at Goddard, where she continued her research on sea ice modeling. But Parkinson's impact goes beyond theory.  She began analyzing satellite data, leading to a groundbreaking discovery: a decline in Arctic sea ice coverage between 1973 and 1987. This critical finding caught the attention of Senator Al Gore, highlighting the urgency of climate change.

Parkinson's leadership extended beyond research.  As Project Scientist for the Aqua satellite, she championed making its data freely available. This real-time information has benefitted countless projects, from wildfire management to weather forecasting, even aiding in monitoring the COVID-19 pandemic. Parkinson's dedication to understanding sea ice patterns and the impact of climate change continues to be a valuable resource for our planet.

Make sure to follow us on Tumblr for your regular dose of space! 

More Posts from Nasa and Others

9 years ago

Astronomy Night at the White House

NASA took over the White House Instagram today in honor of Astronomy Night to share some incredible views of the universe and the world around us. Check out more updates from the astronauts, scientists, and students on South Lawn.

image

Here’s a nighttime view of Washington, D.C. from the astronauts on the International Space Station on October 17. Can you spot the White House? 

image

Check out this look at our sun taken by NASA’s Solar Dynamics Observatory. The SDO watches the sun constantly, and it captured this image of the sun emitting a mid-level solar flare on June 25. Solar flares are powerful bursts of radiation. Harmful radiation from a flare can’t pass through Earth’s atmosphere to physically affect humans on the ground. But when they’re intense enough, they can disturb the atmosphere in the layer where GPS and communications signals travel.

image

Next up is this incredible view of Saturn’s rings, seen in ultraviolet by NASA’s Cassini spacecraft. Hinting at the origin of the rings and their evolution, this ultraviolet view indicates that there’s more ice toward the outer part of the rings than in the inner part.

image

Take a look at the millions of galaxies that populate the patch of sky known as the COSMOS field, short for Cosmic Evolution Survey. A portion of the COSMOS field is seen here by NASA’s Spitzer Space Telescope. Even the smallest dots in this image are galaxies, some up to 12 billion light-years away. The picture is a combination of infrared data from Spitzer (red) and visible-light data (blue and green) from Japan’s Subaru telescope atop Mauna Kea in Hawaii. The brightest objects in the field are more than ten thousand times fainter than what you can see with the naked eye.

image

This incredible look at the Cat’s Eye nebula was taken from a composite of data from NASA’s Chandra X-ray Observatory and Hubble Space Telescope. This famous object is a so-called planetary nebula that represents a phase of stellar evolution that the Sun should experience several billion years from now. When a star like the Sun begins to run out of fuel, it becomes what is known as a red giant. In this phase, a star sheds some of its outer layers, eventually leaving behind a hot core that collapses to form a dense white dwarf star. A fast wind emanating from the hot core rams into the ejected atmosphere, pushes it outward, and creates the graceful filamentary structures seen with optical telescopes.

image

This view of the International Space Station is a composite of nine frames that captured the ISS transiting the moon at roughly five miles per second on August 2. The International Space Station is a unique place—a convergence of science, technology, and human innovation that demonstrates new technologies and makes research breakthroughs not possible on Earth. As the third brightest object in the sky, the International Space Station is easy to see if you know when to look up. You can sign up for alerts and get information on when the International Space Station flies over you at spotthestation.nasa.gov. Thanks for following along today as NASA shared the view from astronomy night at the White House. Remember to look up and stay curious!

8 years ago

Solar System: Things to Know This Week

Making every night science movie night with these amazing videos.

image

1. Pure Beauty 

Our star sprouting coronal loops courtesy of the NASA sun team. See the full video: https://go.nasa.gov/2p47Lt2

image

2. Where’s the last place you'd expect to find enough ice to bury a city? 

Answer: Mercury, the closest planet to the sun. Watch the video: https://svs.gsfc.nasa.gov/11184

image

3. The Mars Fleet 

Only Earth has more satellites studying it. Full video: https://svs.gsfc.nasa.gov/4414

image

4. A Star-Studded Cast

Check out NASA's satellite fleet of Earth observers. See the video: https://svs.gsfc.nasa.gov/12586

image

5. Jupiter in Ultra HD 

Thanks, Hubble Space Telescope! See the video: https://svs.gsfc.nasa.gov/12021

image

6. A Tear Jerker 

Our Cassini spacecraft starts her 4.5-month Grand Finale this week. Full video: https://saturn.jpl.nasa.gov/resources/7628

image

7. Faster Than the Speed of Sound

Winds on Neptune travel faster than the speed of sound. Full video: https://svs.gsfc.nasa.gov/11349

image

8. A Musical Number

This one features the planet Uranus doing pop and lock. Full video: https://youtu.be/CWuWoiHmXUs

image

9. Up Close and Personal 

Thanks to our New Horizons mission, we’ve been able to get up close and with Pluto. Full video: https://svs.gsfc.nasa.gov/12080

image

10: The Treasure Trove

TRAPPIST-1 is a treasure trove of seven Earth-sized planets orbiting a distant star. Full video: https://www.jpl.nasa.gov/video/details.php?id=1459

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

The Artemis Story: Where We Are Now and Where We’re Going

image

Using a sustainable architecture and sophisticated hardware unlike any other, the first woman and the next man will set foot on the surface of the Moon by 2024. Artemis I, the first mission of our powerful Space Launch System (SLS) rocket and Orion spacecraft, is an important step in reaching that goal.

As we close out 2019 and look forward to 2020, here’s where we stand in the Artemis story — and what to expect in 2020. 

Cranking Up The Heat on Orion

The Artemis I Orion spacecraft arrived at our Plum Brook Station in Sandusky, Ohio, on Tuesday, Nov. 26 for in-space environmental testing in preparation for Artemis I.

This four-month test campaign will subject the spacecraft, consisting of its crew module and European-built service module, to the vacuum, extreme temperatures (ranging from -250° to 300° F) and electromagnetic environment it will experience during the three-week journey around the Moon and back. The goal of testing is to confirm the spacecraft’s components and systems work properly under in-space conditions, while gathering data to ensure the spacecraft is fit for all subsequent Artemis missions to the Moon and beyond. This is the final critical step before the spacecraft is ready to be joined with the Space Launch System rocket for this first test flight in 2020!

Bringing Everyone Together

image

On Dec. 9, we welcomed members of the public to our Michoud Assembly Facility in New Orleans for #Artemis Day and to get an up-close look at the hardware that will help power our Artemis missions. The 43-acre facility has more than enough room for guests and the Artemis I, II, and III rocket hardware! NASA Administrator Jim Bridenstine formally unveiled the fully assembled core stage of our SLS rocket for the first Artemis mission to the Moon, then guests toured of the facility to see flight hardware for Artemis II and III. The full-day event — complete with two panel discussions and an exhibit hall — marked a milestone moment as we prepare for an exciting next phase in 2020.

Rolling On and Moving Out

image

Once engineers and technicians at Michoud complete functional testing on the Artemis I core stage, it will be rolled out of the Michoud factory and loaded onto our Pegasus barge for a very special delivery indeed. About this time last year, our Pegasus barge crew was delivering a test version of the liquid hydrogen tank from Michoud to NASA’s Marshall Space Flight Center in Huntsville for structural testing. This season, the Pegasus team will be transporting a much larger piece of hardware — the entire core stage — on a slightly shorter journey to the agency’s nearby Stennis Space Center near Bay St. Louis, Mississippi.

Special Delivery

image

Why Stennis, you ask? The giant core stage will be locked and loaded into the B2 Test Stand there for the landmark Green Run test series. During the test series, the entire stage, including its extensive avionics and flight software systems, will be tested in full. The series will culminate with a hot fire of all four RS-25 engines and will certify the complex stage “go for launch.” The next time the core stage and its four engines fire as one will be on the launchpad at NASA’s Kennedy Space Center in Florida.

Already Working on Artemis II

The Artemis Story: Where We Are Now And Where We’re Going

As Orion and SLS make progress toward the pad for Artemis I, employees at NASA centers and large and small companies across America are hard at work assembling and manufacturing flight hardware for Artemis II and beyond.  The second mission of SLS and Orion will be a test flight with astronauts aboard that will go around the Moon before returning home. Our work today will pave the way for a new generation of moonwalkers and Artemis explorers.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
2 years ago

Caution: Universe Work Ahead 🚧

We only have one universe. That’s usually plenty – it’s pretty big after all! But there are some things scientists can’t do with our real universe that they can do if they build new ones using computers.

The universes they create aren’t real, but they’re important tools to help us understand the cosmos. Two teams of scientists recently created a couple of these simulations to help us learn how our Nancy Grace Roman Space Telescope sets out to unveil the universe’s distant past and give us a glimpse of possible futures.

Caution: you are now entering a cosmic construction zone (no hard hat required)!

A black square covered in thousands of tiny red dots and thousands more slightly larger, white and yellow fuzzy blobs. Each speck is a simulated galaxy. Credit: M. Troxel and Caltech-IPAC/R. Hurt

This simulated Roman deep field image, containing hundreds of thousands of galaxies, represents just 1.3 percent of the synthetic survey, which is itself just one percent of Roman's planned survey. The full simulation is available here. The galaxies are color coded – redder ones are farther away, and whiter ones are nearer. The simulation showcases Roman’s power to conduct large, deep surveys and study the universe statistically in ways that aren’t possible with current telescopes.

One Roman simulation is helping scientists plan how to study cosmic evolution by teaming up with other telescopes, like the Vera C. Rubin Observatory. It’s based on galaxy and dark matter models combined with real data from other telescopes. It envisions a big patch of the sky Roman will survey when it launches by 2027. Scientists are exploring the simulation to make observation plans so Roman will help us learn as much as possible. It’s a sneak peek at what we could figure out about how and why our universe has changed dramatically across cosmic epochs.

This video begins by showing the most distant galaxies in the simulated deep field image in red. As it zooms out, layers of nearer (yellow and white) galaxies are added to the frame. By studying different cosmic epochs, Roman will be able to trace the universe's expansion history, study how galaxies developed over time, and much more.

As part of the real future survey, Roman will study the structure and evolution of the universe, map dark matter – an invisible substance detectable only by seeing its gravitational effects on visible matter – and discern between the leading theories that attempt to explain why the expansion of the universe is speeding up. It will do it by traveling back in time…well, sort of.

Seeing into the past

Looking way out into space is kind of like using a time machine. That’s because the light emitted by distant galaxies takes longer to reach us than light from ones that are nearby. When we look at farther galaxies, we see the universe as it was when their light was emitted. That can help us see billions of years into the past. Comparing what the universe was like at different ages will help astronomers piece together the way it has transformed over time.

The animation starts with a deep field image of the universe, showing warm toned galaxies as small specks dusted on a black backdrop. Then the center is distorted as additional layers of galaxies are added. The center appears to bulge toward the viewer, and galaxies are enlarged and smeared into arcs. Credit: Caltech-IPAC/R. Hurt

This animation shows the type of science that astronomers will be able to do with future Roman deep field observations. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light they magnify.

The simulation demonstrates how Roman will see even farther back in time thanks to natural magnifying glasses in space. Huge clusters of galaxies are so massive that they warp the fabric of space-time, kind of like how a bowling ball creates a well when placed on a trampoline. When light from more distant galaxies passes close to a galaxy cluster, it follows the curved space-time and bends around the cluster. That lenses the light, producing brighter, distorted images of the farther galaxies.

Roman will be sensitive enough to use this phenomenon to see how even small masses, like clumps of dark matter, warp the appearance of distant galaxies. That will help narrow down the candidates for what dark matter could be made of.

Three small squares filled with bluish dots emerge from a black screen. The black background is then filled with bluish dots too, and then the frame zooms out to see a much larger area of the dots. Credit: NASA's Goddard Space Flight Center and A. Yung

In this simulated view of the deep cosmos, each dot represents a galaxy. The three small squares show Hubble's field of view, and each reveals a different region of the synthetic universe. Roman will be able to quickly survey an area as large as the whole zoomed-out image, which will give us a glimpse of the universe’s largest structures.

Constructing the cosmos over billions of years

A separate simulation shows what Roman might expect to see across more than 10 billion years of cosmic history. It’s based on a galaxy formation model that represents our current understanding of how the universe works. That means that Roman can put that model to the test when it delivers real observations, since astronomers can compare what they expected to see with what’s really out there.

A cone shaped assortment of blue dots is on a grid. The tip of the cone is labeled "present day," and the other end is labeled "13.4 billion years ago." Three slices from the middle are pulled out and show the universe's structure developing over time. Credit: NASA's Goddard Space Flight Center and A. Yung

In this side view of the simulated universe, each dot represents a galaxy whose size and brightness corresponds to its mass. Slices from different epochs illustrate how Roman will be able to view the universe across cosmic history. Astronomers will use such observations to piece together how cosmic evolution led to the web-like structure we see today.

This simulation also shows how Roman will help us learn how extremely large structures in the cosmos were constructed over time. For hundreds of millions of years after the universe was born, it was filled with a sea of charged particles that was almost completely uniform. Today, billions of years later, there are galaxies and galaxy clusters glowing in clumps along invisible threads of dark matter that extend hundreds of millions of light-years. Vast “cosmic voids” are found in between all the shining strands.

Astronomers have connected some of the dots between the universe’s early days and today, but it’s been difficult to see the big picture. Roman’s broad view of space will help us quickly see the universe’s web-like structure for the first time. That’s something that would take Hubble or Webb decades to do! Scientists will also use Roman to view different slices of the universe and piece together all the snapshots in time. We’re looking forward to learning how the cosmos grew and developed to its present state and finding clues about its ultimate fate.

Thousands of small, light and deep blue dots cover a black background representing galaxies in a simulated universe. A tiny white square is labeled "Hubble." A set of 18 much larger squares, oriented in three curved rows, are labeled "Roman." Credit: NASA's Goddard Space Flight Center and A. Yung

This image, containing millions of simulated galaxies strewn across space and time, shows the areas Hubble (white) and Roman (yellow) can capture in a single snapshot. It would take Hubble about 85 years to map the entire region shown in the image at the same depth, but Roman could do it in just 63 days. Roman’s larger view and fast survey speeds will unveil the evolving universe in ways that have never been possible before.

Roman will explore the cosmos as no telescope ever has before, combining a panoramic view of the universe with a vantage point in space. Each picture it sends back will let us see areas that are at least a hundred times larger than our Hubble or James Webb space telescopes can see at one time. Astronomers will study them to learn more about how galaxies were constructed, dark matter, and much more.

The simulations are much more than just pretty pictures – they’re important stepping stones that forecast what we can expect to see with Roman. We’ve never had a view like Roman’s before, so having a preview helps make sure we can make the most of this incredible mission when it launches.

Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

Smoke Gets In Your Eyes…and Our Instruments

Fires are some of the most dynamic and dramatic natural phenomena. They can change rapidly, burning natural landscapes and human environments alike. Fires are a natural part of many of Earth’s ecosystems, necessary to replenish soil and for healthy plant growth. But, as the planet warms, fires are becoming more intense, burning longer and hotter.

image

Right now, a fleet of vehicles and a team of scientists are in the field, studying how smoke from those fires affects air quality, weather and climate. The mission? It’s called FIREX-AQ. They’re working from the ground up to the sky to measure smoke, find out what’s in it, and investigate how it affects our lives.

image

Starting on the ground, the Langley Aerosol Research Group Experiment (LARGE) operates out of a large van. It’s one of two such vans working with the campaign, along with some other, smaller vans. It looks a little like a food truck, but instead of a kitchen, the inside is packed full of science instruments.

image

The team drives the van out into the wilderness to take measurements of smoke and tiny particles in the air at the ground level. This is important for a few reasons: First of all, it’s the stuff we’re breathing! It also gives us a look at smoke overnight, when the plumes tend to sink down out of the atmosphere and settle near the ground until temperatures heat back up with the Sun. The LARGE group camps out with their van full of instruments, taking continuous measurements of smoke…and not getting much sleep.

image

Just a little higher up, NOAA’s Twin Otter aircraft can flit down close to where the fires are actually burning, taking measurements of the smoke and getting a closer look at the fires themselves. The Twin Otters are known as “NOAA’s workhorses” because they’re easily maneuverable and can fly nice and slow to gather measurements, topping out at about 17,000 feet.

image

Then, sometimes flying at commercial plane height (30,000 feet) and swooping all the way down to 500 feet above the ground, NASA’s DC-8 is packed wing to wing with science instruments. The team onboard the DC-8 is looking at more than 500 different chemicals in the smoke.

image

The DC-8 does some fancy flying, crisscrossing over the fires in a maneuver called “the lawnmower” and sometimes spiraling down over one vertical column of air to capture smoke and particles at all different heights. Inside, the plane is full of instrument racks and tubing, capturing external air and measuring its chemical makeup. Fun fact: The front bathroom on the DC-8 is closed during science flights to make sure the instruments don’t accidentally measure anything ejected from the plane.

image

Finally, we make it all the way up to space. We’ve got a few different mechanisms for studying fires already mounted on satellites. Some of the satellites can see where active fires are burning, which helps scientists and first responders keep an eye on large swaths of land.

image

Some satellites can see smoke plumes, and help researchers track them as they move across land, blown by wind.

image

Other satellites help us track weather and forecast how the fires might behave. That’s important for keeping people safe, and it helps the FIREX-AQ team know where to fly and drive when they’ll get the most information. These forecasts use computer models, based on satellite observations and data about how fires and smoke behave. FIREX-AQ’s data will be fed back into these models to make them even more accurate.

image

Learn more about how NASA is studying fires from the field, here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Celebrate #BlackHoleFriday with Nurturing Baby Stars

image

Are you throwing all your money into a black hole today?

Forget Black Friday — celebrate #BlackHoleFriday with us and get sucked into this recent discovery of a black hole that may have sparked star births across multiple galaxies.

If confirmed, this discovery would represent the widest reach ever seen for a black hole acting as a stellar kick-starter — enhancing star formation more than one million light-years away. (One light year is equal to 6 trillion miles.)

A black hole is an extremely dense object from which no light can escape. The black hole's immense gravity pulls in surrounding gas and dust. Sometimes, black holes hinder star birth. Sometimes — like perhaps in this case — they increase star birth.

Telescopes like our Chandra X-ray Observatory help us detect the X-rays produced by hot gas swirling around the black hole. Have more questions about black holes? Click here to learn more.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Living and Working Aboard Station

 Join us on Facebook Live for a conversation with astronaut Kate Rubins and the director of the National Institutes for Health on Tuesday, October 18 at 11:15 a.m. ET.

Astronaut Kate Rubins has conducted out of this world research aboard Earth’s only orbiting laboratory. During her time aboard the International Space Station, she became the first person to sequence DNA in space. On Tuesday, she’ll be live on Facebook with National Institute of Health director Francis Collins, who led the effort to map the human genome. You can submit questions for Kate using the hashtag #SpaceChat on Twitter, or during the live event. Here’s a primer on the science this PhD astronaut has been conducting to help inspire your questions: 

image

Kate has a background in genomics (a branch of molecular genetics that deals with the study of genomes,specifically the identification and sequencing of their constituent genes and the application of this knowledge in medicine, pharmacy,agriculture, and other fields). When she began her tenure on the station, zero base pairs of DNA had been sequenced in space. Within just a few weeks, she and the Biomolecule Sequencer team had sequenced their one billionth base of DNA aboard the orbital platform.

“I [have a] genomics background, [so] I get really excited about that kind of stuff,” Rubins said in a downlink shortly after reaching the one billion base pairs sequenced goal.

Learn more about this achievement:

+First DNA Sequencing in Space a Game Changer

+Science in Short: One Billion Base Pairs Sequenced

Why is DNA Sequencing in Space a Big Deal?

A space-based DNA sequencer could identify microbes, diagnose diseases and understand crew member health, and potentially help detect DNA-based life elsewhere in the solar system.

+Why Sequencing DNA in Space is a Big Deal

https://youtu.be/1N0qm8HcFRI 

Miss the Reddit AMA on the subject? Here’s a transcript:

+NASA AMA: We just sequenced DNA in space for the first time. Ask us anything! 

NASA and Its Partnerships

image

We’re not doing this alone. Just like the DNA sequencing was a collaborative project with industry, so is the Eli Lilly Hard to Wet Surfaces investigation, which is a partnership between CASIS and Eli Lilly Co. In this experiment aboard the station, astronauts will study how certain materials used in the pharmaceutical industry dissolve in water while in microgravity. Results from this investigation could help improve the design of tablets that dissolve in the body to deliver drugs, thereby improving drug design for medicines used in space and on Earth. Learn more about what we and our partners are doing:

+Eli Lilly Hard to Wet Surfaces – been happening the last week and a half or so

Researchers to Test How Solids Dissolve in Space to Design Better Tablets and Pills on Earth

With our colleagues at the Stanford University School of Medicine, we’re also investigating the effects of spaceflight on stem cell-derived heart cells, specifically how heart muscle tissue, contracts, grows and changes  in microgravity and how those changes vary between subjects. Understanding how heart muscle cells change in space improves efforts for studying disease, screening drugs and conducting cell replacement therapy for future space missions. Learn more:

+Heart Cells

+Weekly Recap From the Expedition Lead Scientist for Aug. 18, 2016 

It’s Not Just Medicine

image

Kate and her crew mates have also worked on the combustion experiments.

Kate has also worked on the Bigelow Expandable Activity Module (BEAM), an experimental expandable capsule that docks with the station. As we work on our Journey to Mars, future space habitats  are a necessity. BEAM, designed for Mars or other destinations, is a lightweight and relatively simple to construct solution. Kate has recently examined BEAM, currently attached to the station, to take measurements and install sensors.

image

Kate recently performed a harvest of the Plant RNA Regulation experiment, by removing seed cassettes and stowing them in cold stowage.

image

The Plant RNA Regulation investigation studies the first steps of gene expression involved in development of roots and shoots. Scientists expect to find new molecules that play a role in how plants adapt and respond to the microgravity environment of space, which provides new insight into growing plants for food and oxygen supplies on long-duration missions. Read more about the experiment:

+Plant RNA Harvest

NASA Astronaut Kate Rubins is participating in several investigations examining changes in her body as a result of living in space. Some of these changes are similar to issues experienced by our elderly on Earth; for example, bone loss (osteoporosis), cardiovascular deconditioning, immune dysfunction, and muscle atrophy. Understanding these changes and how to prevent them in astronauts off the Earth may help improve health for all of us on the Earth. In additional, the crew aboard station is also working on more generalized studies of aging.

+ Study of the effects of aging on C. elegans, a model organism for a range of biological studies.


Tags
5 years ago

Happy Halloween From The Space Place!

In a dark conference room, a pumpkin gently landed on the Moon, its retrorockets smoldering, while across the room, a flying saucer pumpkin hovered above Area 51 as a pumpkin alien wreaked havoc.

Happy Halloween From The Space Place!

Suffice to say that when the scientists and engineers at our Jet Propulsion Laboratory in Pasadena, California, compete in a pumpkin-carving contest, the solar system's the limit. Now in its ninth year, the contest gives teams only one hour to carve (off the clock, on their lunch break), though they can prepare non-pumpkin materials — like backgrounds, sound effects and motorized parts — ahead of time. 

Enjoy! 

Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!

Looking for more pumpkin fun? Check out the full gallery, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

How does the whole sleeping situation work with 0 gravity, or do sleep mid air?


Tags
9 years ago

How Well Do you Know Neptune?

image

Dark, cold and whipped by supersonic winds, Neptune is the last of the hydrogen and helium gas giants in our solar system. More than 30 times as far from the sun as Earth, the planet takes almost 165 Earth years to orbit our sun! In fact, in 2011, Neptune completed its first orbit since its discovery in 1846.

image

Here are a few things you might not know about the windiest planet:

If the sun were as tall as a typical front door, the Earth would be the size of a nickel and Neptune would be about as big as a baseball.

Neptune orbits our sun, a star. Neptune is the eighth planet from the sun at a distance of about 4.5 billion km (2.8 billion miles) or 30.07 AU. 

One day on Neptune takes about 16 hours (the time it takes for Neptune to rotate or spin once)

Neptune makes a complete orbit around the sun (a year in Neptunian time) in about 165 Earth years (60,190 Earth days)

Neptune has six rings

Voyager 2 is the only spacecraft to have visited Neptune

Neptune has 13 moons. They are named after various sea gods and nymphs in Greek mythology

Did you know that Neptune has storms?

image

Similar to Jupiter, Neptune has storms that create gigantic spots in its atmosphere…well, it did. When Voyager 2 flew past Neptune in 1989, it tracked and imaged the “Great Dark Spot” — a storm larger than the entire Earth! When the Hubble Space Telescope imaged Neptune the spot had disappeared, only to be replaced with two smaller storms, which in turn also disappeared.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • dr-lapdance
    dr-lapdance reblogged this · 1 week ago
  • marooned-in-reality
    marooned-in-reality liked this · 3 weeks ago
  • sntientcomputer
    sntientcomputer liked this · 3 weeks ago
  • dirtypigeon19
    dirtypigeon19 liked this · 3 weeks ago
  • helianthusaster
    helianthusaster reblogged this · 3 weeks ago
  • helianthusaster
    helianthusaster liked this · 3 weeks ago
  • nat-tea-n-coffee
    nat-tea-n-coffee reblogged this · 3 weeks ago
  • nat-tea-n-coffee
    nat-tea-n-coffee liked this · 3 weeks ago
  • solarpunkbaby
    solarpunkbaby reblogged this · 3 weeks ago
  • bi-bee159
    bi-bee159 liked this · 1 month ago
  • digital0ak
    digital0ak liked this · 1 month ago
  • rosethevoid
    rosethevoid liked this · 1 month ago
  • tristinaautumn
    tristinaautumn liked this · 1 month ago
  • andy202405
    andy202405 liked this · 1 month ago
  • optimisticc-heartss
    optimisticc-heartss liked this · 1 month ago
  • butter-is-bored
    butter-is-bored liked this · 1 month ago
  • sizzlingcandyjellyfishhhhhh
    sizzlingcandyjellyfishhhhhh liked this · 1 month ago
  • radio-silence-fan
    radio-silence-fan reblogged this · 1 month ago
  • radio-silence-fan
    radio-silence-fan liked this · 1 month ago
  • starpilled
    starpilled liked this · 1 month ago
  • sowearecleariamhere
    sowearecleariamhere liked this · 2 months ago
  • absolutesciencefiction
    absolutesciencefiction reblogged this · 2 months ago
  • buf309
    buf309 liked this · 2 months ago
  • mariaisabel992
    mariaisabel992 liked this · 2 months ago
  • androidsghost
    androidsghost liked this · 2 months ago
  • solarpunkbaby
    solarpunkbaby liked this · 2 months ago
  • empyreanangel
    empyreanangel reblogged this · 2 months ago
  • kimberlyn64
    kimberlyn64 liked this · 2 months ago
  • cabbagesoupenjoyer
    cabbagesoupenjoyer liked this · 2 months ago
  • il0veu
    il0veu liked this · 2 months ago
  • thegirlplug
    thegirlplug liked this · 2 months ago
  • astridvo
    astridvo liked this · 2 months ago
  • carpediemduude
    carpediemduude liked this · 2 months ago
  • imaginesbymonika
    imaginesbymonika liked this · 2 months ago
  • call-me-ryro
    call-me-ryro liked this · 2 months ago
  • dimensionwarp
    dimensionwarp liked this · 3 months ago
  • celestialveilinn
    celestialveilinn reblogged this · 3 months ago
  • datafag1
    datafag1 liked this · 3 months ago
  • emmielemie
    emmielemie reblogged this · 3 months ago
  • destinopino
    destinopino liked this · 3 months ago
  • wheresmyeddiemunson
    wheresmyeddiemunson liked this · 3 months ago
  • halaagmod
    halaagmod liked this · 3 months ago
  • bookbansheee
    bookbansheee liked this · 3 months ago
  • marecrisis
    marecrisis liked this · 3 months ago
  • calliope-ev
    calliope-ev liked this · 4 months ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags