Marcos Berrios is from Guaynabo, Puerto Rico, and received his Ph.D. in aeronautics and astronautics from Stanford. Berríos has logged over 1,400 hours of flight time in over 20 different aircraft. https://go.nasa.gov/49DEAAt
Make sure to follow us on Tumblr for your regular dose of space!
NASA Astronauts Robert Behnken and Douglas Hurley undock from the International Space Station at 7:34 p.m. EDT tonight, bringing to a close their ~2 month Launch America mission. Check out these science highlights from the 100+ hours of work they completed aboard the orbital lab.
Watch live coverage of undocking and splashdown here: https://www.nasa.gov/nasalive
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.
To read more entires from this series, visit our Space Blogs on Tumblr.
While flying fast-moving jets, we practice the art of recovering from unusual attitudes. We close our eyes, and let the instructor put the jet in an unexpected attitude. Sometimes straight up, sometimes straight down, sometimes upside down, and sometimes anything in-between. The goal is to open our eyes, analyze the situation and make rapid and smooth corrections to power and attitude to effect a speedy recovery to straight and level flight without departing controlled flight, or having to endure high G’s, or experiencing big losses of altitude.
Sometimes, when I crawl into my crew quarters on the space station, it is very dark – just like closing our eyes in the jet. And then, as I sleep, my body floats around and changes position. When I awake in total darkness, I have to figure out what attitude I am in relative to my crew quarters and then right myself. “Unusual Attitude Recovery” can be pretty funny. And sometimes, my heart can get pumping as I awake and realize I don’t know what my attitude is. I execute my procedures to figure out what my attitude is, and then correct it. At first, it used to take me a while to realize. But now, it is second nature – and it always brings a smile to my face.
Find more ‘Captain’s Log’ entries HERE.
Follow NASA astronaut Scott Tingle on Instagram and Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
You seem to have spent a lot of time in some pretty isolated locations during your career, what are some challenges to that? Was there anything you enjoyed about it?
What's a Question you wish someone would ask?
Just as gravity is one key to how things move on Earth, a process called magnetic reconnection is key to how electrically-charged particles speed through space. Now, our Magnetospheric Multiscale mission, or MMS, has discovered magnetic reconnection – a process by which magnetic field lines explosively reconfigure – occurring in a new and surprising way near Earth.
Invisible to the eye, a vast network of magnetic energy and particles surround our planet — a dynamic system that influences our satellites and technology. The more we understand the way those particles move, the more we can protect our spacecraft and astronauts both near Earth and as we explore deeper into the solar system.
Earth’s magnetic field creates a protective bubble that shields us from highly energetic particles that stream in both from the Sun and interstellar space. As this solar wind bathes our planet, Earth’s magnetic field lines get stretched. Like elastic bands, they eventually release energy by snapping and flinging particles in their path to supersonic speeds.
That burst of energy is generated by magnetic reconnection. It’s pervasive throughout the universe — it happens on the Sun, in the space near Earth and even near black holes.
Scientists have observed this phenomenon many times in Earth’s vast magnetic environment, the magnetosphere. Now, a new study of data from our MMS mission caught the process occurring in a new and unexpected region of near-Earth space. For the first time, magnetic reconnection was seen in the magnetosheath — the boundary between our magnetosphere and the solar wind that flows throughout the solar system and one of the most turbulent regions in near-Earth space.
The four identical MMS spacecraft — flying through this region in a tight pyramid formation — saw the event in 3D. The arrows in the data visualization below show the hundreds of observations MMS took to measure the changes in particle motion and the magnetic field.
The data show that this event is unlike the magnetic reconnection we’ve observed before. If we think of these magnetic field lines as elastic bands, the ones in this region are much smaller and stretchier than elsewhere in near-Earth space — meaning that this process accelerates particles 40 times faster than typical magnetic reconnection near Earth. In short, MMS spotted a completely new magnetic process that is much faster than what we’ve seen before.
What’s more, this observation holds clues to what’s happening at smaller spatial scales, where turbulence takes over the process of mixing and accelerating particles. Turbulence in space moves in random ways and creates vortices, much like when you mix milk into coffee. The process by which turbulence energizes particles in space is still a big area of research, and linking this new discovery to turbulence research may give insights into how magnetic energy powers particle jets in space.
Keep up with the latest discoveries from the MMS mission: @NASASun on Twitter and Facebook.com/NASASunScience.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Did you ever have insecurities while chasing your goal of becoming an astronaut? Were there pressures placed on you, by yourself or others, that you had to overcome? And if so, how did you overcome them? -Emma
Emma, I think everyone has insecurities about going into the unknown. The trick is not letting them get in the way. I think if you’re passionate about what you want, no amount of insecurities will keep you from it.
A new image from NASA's James Webb Space Telescope reveals a remarkable cosmic sight: at least 17 concentric dust rings emanating from a pair of stars. Just 5,300 light-years from Earth, the star duo are collectively known as Wolf-Rayet 140. Each ring was created when the two stars came close together and their stellar winds (streams of gas they blow into space) collided so forcefully that some of the gas was compressed into dust. The stars' orbits bring them together about once every eight years, and forms a half-shell of dust that looks like a ring from our perspective. Like a cosmic fingerprint, the 17 rings reveal more than a century of stellar interactions—and the "fingerprint" belonging to Wolf-Rayet 140 may be equally unique. Other Wolf-Rayet stars produce dust, but no other pair are known to produce rings quite like Wolf-Rayet 140.
Learn more about Wolf-Rayet 140.
Make sure to follow us on Tumblr for your regular dose of space!
From a tour of Saturn's many enthralling moons to an incredible view of Earth through its rings, the planet continues to captivate the imagination. This week, here are 10 things you need to know about our fascinating ringed neighbor.
When Galileo Galilei was observing Saturn in the 1600s, he noticed strange objects on each side of the planet. He drew in his notes a triple-bodied planet system with ears. These "ears" were later discovered to be the rings of Saturn.
Saturn orbits our sun and is the sixth planet from the sun at an average distance of about 886 million miles or 9.5 AU.
Time flies when you're on Saturn. One day on Saturn takes just 10.7 hours (the time it takes for Saturn to rotate or spin once). The planet makes a complete orbit around the sun (a year in Saturnian time) in 29 Earth years, or 10,756 Earth days. saturn.jpl.nasa.gov/news/2955/measuring-a-day
That's because you can't stand on Saturn—it's a gas-giant planet and doesn't have a solid surface. But you might want a jacket. The planet's temperatures can dip to -220 degrees F.
Only a handful of missions have made their way to Saturn: Pioneer 11, Voyager 1 and 2, and Cassini-Huygens, which is there now. Since 2004, Cassini has been exploring Saturn and its moons and rings—but will complete its journey on Sept. 15, 2017.
This month is a great time to observe Saturn from Earth. Check out June's "What's Up?" video for a how-to guide.
Saturn's spectacular ring system is made up of seven rings with several gaps and divisions between them. From now until September, the Cassini spacecraft is performing a set of daring dives every week between the planet and the rings. No other mission has ever explored this unique region before, and what we learn from these final orbits will help us understand of how giant planets—and planetary systems everywhere—form and evolve.
Saturn has a total of 62 moons: 53 known moons, with an additional nine moons awaiting confirmation.
Saturn's moon Atlas looks like a flying saucer. See for yourself.
Saturn can't support life as we know it, but some of its moons have conditions that might support life. Ocean worlds could be the answer to life in space and two of Saturn's moons—Titan and Enceladus—are on that list.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
October 5 marks the first meeting of the National Space Council since 1993. But what is it and why does it matter? Let us explain by taking a trip back in history… We’ve teleported back to 1958…President Dwight Eisenhower is in office and the National Aeronautics and Space Council was created with the signing of the Space Act that year. President Eisenhower chaired the first National Aeronautics and Space Council (NASC). That council continued during the Kennedy, Johnson and Nixon Administrations during which we put an American in outer space with John Glenn in 1962 and put humans on the moon starting in 1969. That Council was disbanded in 1973.
In 1989, President George H.W. Bush’s Administration reinstated what was known as the National Space Council, which was designed to help chart national space policy and the roles of multiple federal agencies such as NASA. The Space Council disbanded again in 1993.
On June 30, 2017, President Trump signed an executive order reestablishing the National Space Council – which brings us to today. The current National Space Council will bring a unified national perspective on space policy to the Administration by coordinating the views of the civilian, commercial and national security sectors.
So now that you have a bit of the history…why does this matter?
With the Oct. 5 meeting, titled “Leading the Next Frontier: An Event with the National Space Council,” Vice President Mike Pence will convene this council and have participation from acting NASA Administrator Robert Lightfoot, as well as a number of Trump Administration cabinet members and senior officials, and aerospace industry leaders.
During the council’s first meeting, we will hear from experts who represent various parts of the space industry: Civil Space, Commercial Space and National Security Space.
You can watch the first meeting of the National Space Council starting at 10 a.m. EDT HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Testing is underway at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on the agency’s new Space Launch System, the world’s most powerful rocket. SLS and NASA’s Orion spacecraft will enable deep-space missions, beginning a new era of exploration beyond Earth’s orbit.
Engineers at Marshall have stacked four qualification articles of the upper part of SLS into a 65-foot-tall test stand using more than 3,000 bolts to hold the hardware together. Tests are currently underway to ensure the rocket hardware can withstand the pressures of launch and flight.
The integrated tests consists of:
1. Launch Vehicle Adapter
2. Frangible Joint Assembly
3. Interim Cryogenic Propulsion Stage
4. Orion Stage Adapter
Engineers are using 28 load pistons to push, pull and twist the rocket hardware, subjecting it to loads up to 40 percent greater than that expected during flight. More than 100 miles of cables are transmitting measurements across 1,900 data channels.
The Launch Vehicle Stage Adapter, LVSA, connects the SLS core stage and the Interim Cryogenic Propulsion Stage, ICPS. The LVSA test hardware is 26.5 feet tall, with a bottom diameter of 27.5 feet and a top diameter of 16.8 feet. The frangible joint, located between the LVSA and ICPS, is used to separate the two pieces of hardware during flight, allowing the ICPS to provide the thrust to send Orion onto its mission.
The ICPS is a liquid oxygen/liquid hydrogen-based system that will give Orion the big, in-space push needed to fly beyond the moon before it returns to Earth on the first flight of SLS in 2018. For this test series, the fuel tanks are filled with nonflammable liquid nitrogen and pressurized with gaseous nitrogen to simulate flight conditions. The nitrogen is chilled to the same temperature as the oxygen and hydrogen under launch conditions.
The Orion Stage Adapter connects the Orion spacecraft to the ICPS. It is 4.8 feet tall, with a 16.8-foot bottom diameter and 18-foot top diameter.
The first integrated flight for SLS and Orion will allow NASA to use the lunar vicinity as a proving ground to test systems farther from Earth, and demonstrate Orion can get to a stable orbit in the area of space near the moon in order to support sending humans to deep space, including the Journey to Mars.
For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts