What Does “chemical Fingerprints” Mean? What Chemicals Indicate Possible Life On Other Planets?

What does “chemical fingerprints” mean? What chemicals indicate possible life on other planets?

More Posts from Nasa and Others

1 year ago
UAE (United Arab Emirates) astronaut Mohammad AlMulla, an Arab and Emirati man, poses for a portrait at NASA's Johnson Space Center in Houston, Texas. Credit: NASA/Josh Valcarcel

Mohammad AlMulla

Mohammad AlMulla, born in Dubai, received his commercial pilot's license from Australia at the age of 19. AlMulla was a training lead with the Dubai Police before becoming an astronaut candidate for the United Arab Emirates. https://mbrsc.ae/team/mohammed_mulla/

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Solar System: Things to Know This Week

Get the latest on women making history at NASA, our Juno mission, the Curiosity rover and move!

image

1. Women at NASA Making History, Creating the Future

Throughout Women's History Month, we've been presenting profiles of the women who are leading the way in deep space exploration.

+ Meet some of them

image

2. Juno and the Giant

Our Juno spacecraft made its fifth close flyby over giant Jupiter's mysterious cloud tops.

+ See the latest from the King of Planets

image

3. When the Road Gets Rough, the Tough Keep Rolling

A routine check of the aluminum wheels on our Curiosity Mars rover has found two small breaks on the rover's left middle wheel tread--the latest sign of wear and tear as the rover continues its journey, now approaching the 10-mile (16 kilometer) mark. But there's no sign the robotic geologist won't keep roving right through its ongoing mission.

+ Get the full report

image

4. What Do Mars and Dinosaurs Have in Common?

Our research reveals that volcanic activity at the giant Martian volcano Arsia Mons ceased about 50 million years ago, around the time of Earth's Cretaceous-Paleogene extinction, when large numbers of plant and animal species (including dinosaurs) went extinct. However, there's no reason to think the two events were more than a cosmic coincidence.

+ Learn how scientists pieced together the past

image

5. A Comet in Commotion

Images returned from the European Space Agency's Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place -- full of growing fractures, collapsing cliffs and massive rolling boulders.

+ See the many faces of Comet #67P

image

6. Next Generation Space Robot is Ingenious, Versatile--and Cute

The next rovers to explore another planet might bring along a scout. The Pop-Up Flat Folding Explorer Robot (PUFFER) in development at the Jet Propulsion Laboratory was inspired by origami. Its lightweight design is capable of flattening itself, tucking in its wheels and crawling into places rovers can't fit.

+ Meet PUFFER

image

7. Shadowy Dawn

According to data from our Dawn mission to Ceres, shadowed craters on the dwarf planet may be linked to the history of how the small world has been tilted over time by the gravity of planets like Jupiter.

+ Find out how understanding "cycles of obliquity" might solve solar system mysteries

image

8. On Orbit and Online

We’re developing a  long-term technology demonstration project of what could become the high-speed internet of the sky. The Laser Communications Relay Demonstration (LCRD) will help engineers understand the best ways to operate laser communications systems, which could enable much higher data rates for connections between spacecraft and Earth, such as scientific data downlink and astronaut communications.

+ See how it will work

image

9. A Big Role for Small Sats in Deep Space Exploration

We selected 10 studies to develop mission concepts using CubeSats and other kinds of very small satellites to investigate Venus, Earth's moon, asteroids, Mars and the outer planets. "These small but mighty satellites have the potential to enable transformational science," said Jim Green, director of NASA's Planetary Science Division.

+ Get the small details

image

10. Rings Around the Red Planet?

It's possible that one of our closest neighbors had rings at one point -- and may have them again someday. At least, that's the theory put forth by NASA-funded scientists at Purdue University.

+ See more details about the once and future rings of Mars

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

5 years ago

Hii! I'm unsure if you've been asked this before, but I'd like to give it a shot anyway. What's the greatest legacy you hope to leave to the future generations? Whether it's one of the things you've accomplished already or are hoping to accomplish yet. Thank you very much!


Tags
4 years ago

What do you hope to find on the mars? / What would be the best possible outcome?


Tags
8 years ago

Subtle Lunar Eclipse

Today’s (Feb. 10) lunar activity comes in the form of a penumbral eclipse. What does that mean and how does this type differ from a total eclipse? Let’s take a look:

image

First off, what is a penumbra? During a lunar eclipse, two shadows are cast by the Earth. The first is called the umbra (UM bruh). This shadow gets smaller as it goes away from the Earth. It is the dark center of the eclipse shadow where the moon is completely in the shadow of the Earth.

image

The second shadow is called the penumbra (pe NUM bruh). The penumbra gets larger as it goes away from the Earth. The penumbra is the weak or pale part of the shadow. This occurs because the Earth is covering a portion of the sun.

image

Penumbral eclipses occur when only the outer shadow (the penumbra) of Earth falls on the moon’s surface. This type of eclipse is much more difficult to observe than total eclipses or when a portion of the moon passes into the umbra. That said, if you’re very observant, you may notice a dark shadow on the moon during mid-eclipse on Friday evening. You may not notice anything at all. It’s likely the moon will just look at little bit darker than normal…like this: 

image

Earth’s penumbral shadow forms a diverging cone that expands into space in the opposite direction of the sun. From within this zone, Earth blocks part but not the entire disk of the sun. Thus, some fraction of the sun’s direct rays continues to reach the most deeply eclipsed parts of the moon during a penumbral eclipse.

For most of North America, the penumbral eclipse will begin at moonrise (sunset) on Friday, Feb. 10 and will be obscured by evening light. Here’s a guide of when to look up:

image

Fun fact: Aristotle (384 – 322 BCE) first proved that Earth was round using the curved umbral shadow seen at partial eclipses. In comparing observations of several eclipses, he noted that Earth’s shadow was round no matter where the eclipse took place. Aristotle correctly reasoned that only a sphere casts a round shadow from every angle.

To learn more about lunar eclipses, visit: https://svs.gsfc.nasa.gov/11828

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Magnetospheres: How Do They Work?

The sun, Earth, and many other planets are surrounded by giant magnetic bubbles.

image

Space may seem empty, but it’s actually a dynamic place, dominated by invisible forces, including those created by magnetic fields.  Magnetospheres – the areas around planets and stars dominated by their magnetic fields – are found throughout our solar system. They deflect high-energy, charged particles called cosmic rays that are mostly spewed out by the sun, but can also come from interstellar space. Along with atmospheres, they help protect the planets’ surfaces from this harmful radiation.

It’s possible that Earth’s protective magnetosphere was essential for the development of conditions friendly to life, so finding magnetospheres around other planets is a big step toward determining if they could support life.

But not all magnetospheres are created equal – even in our own backyard, not all planets in our solar system have a magnetic field, and the ones we have observed are all surprisingly different.

image

Earth’s magnetosphere is created by the constantly moving molten metal inside Earth. This invisible “force field” around our planet has an ice cream cone-like shape, with a rounded front and a long, trailing tail that faces away from the sun. The magnetosphere is shaped that way because of the constant pressure from the solar wind and magnetic fields on the sun-facing side.

image

Earth’s magnetosphere deflects most charged particles away from our planet – but some do become trapped in the magnetic field and create auroras when they rain down into the atmosphere.

image

We have several missions that study Earth’s magnetosphere – including the Magnetospheric Multiscale mission, Van Allen Probes, and Time History of Events and Macroscale Interactions during Substorms (also known as THEMIS) – along with a host of other satellites that study other aspects of the sun-Earth connection.

image
image

Mercury, with a substantial iron-rich core, has a magnetic field that is only about 1% as strong as Earth’s. It is thought that the planet’s magnetosphere is stifled by the intense solar wind, limiting its strength, although even without this effect, it still would not be as strong as Earth’s. The MESSENGER satellite orbited Mercury from 2011 to 2015, helping us understand our tiny terrestrial neighbor.

image
image

After the sun, Jupiter has by far the biggest magnetosphere in our solar system – it stretches about 12 million miles from east to west, almost 15 times the width of the sun. (Earth’s, on the other hand, could easily fit inside the sun.) Jupiter does not have a molten metal core like Earth; instead, its magnetic field is created by a core of compressed liquid metallic hydrogen.

image

One of Jupiter’s moons, Io, has intense volcanic activity that spews particles into Jupiter’s magnetosphere. These particles create intense radiation belts and the large auroras around Jupiter’s poles.

image

Ganymede, Jupiter’s largest moon, also has its own magnetic field and magnetosphere – making it the only moon with one. Its weak field, nestled in Jupiter’s enormous shell, scarcely ruffles the planet’s magnetic field.

Our Juno mission orbits inside the Jovian magnetosphere sending back observations so we can better understand this region. Previous observations have been received from Pioneers 10 and 11, Voyagers 1 and 2, Ulysses, Galileo and Cassini in their flybys and orbits around Jupiter.

image

Saturn’s moon Enceladus transforms the shape of its magnetosphere. Active geysers on the moon’s south pole eject oxygen and water molecules into the space around the planet. These particles, much like Io’s volcanic emissions at Jupiter, generate the auroras around the planet’s poles. Our Cassini mission studies Saturn’s magnetic field and auroras, as well as its moon Enceladus.

image
image

Uranus’ magnetosphere wasn't discovered until 1986 when data from Voyager 2’s flyby revealed weak, variable radio emissions. Uranus’ magnetic field and rotation axis are out of alignment by 59 degrees, unlike Earth’s, whose magnetic field and rotation axis differ by only 11 degrees. On top of that, the magnetic field axis does not go through the center of the planet, so the strength of the magnetic field varies dramatically across the surface. This misalignment also means that Uranus’ magnetotail – the part of the magnetosphere that trails away from the sun – is twisted into a long corkscrew.

image
image

Neptune’s magnetosphere is also tilted from its rotation axis, but only by 47. Just like on Uranus, Neptune’s magnetic field strength varies across the planet. This also means that auroras can be seen away from the planet’s poles – not just at high latitudes, like on Earth, Jupiter and Saturn.

image

Does Every Planet Have a Magnetosphere?

Neither Venus nor Mars have global magnetic fields, although the interaction of the solar wind with their atmospheres does produce what scientists call an “induced magnetosphere.” Around these planets, the atmosphere deflects the solar wind particles, causing the solar wind’s magnetic field to wrap around the planet in a shape similar to Earth’s magnetosphere.

image

What About Beyond Our Solar System?

Outside of our solar system, auroras, which indicate the presence of a magnetosphere, have been spotted on brown dwarfs – objects that are bigger than planets but smaller than stars.

There’s also evidence to suggest that some giant exoplanets have magnetospheres. As scientists now believe that Earth’s protective magnetosphere was essential for the development of conditions friendly to life, finding magnetospheres around exoplanets is a big step in finding habitable worlds.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Solar System: Things to Know This Week

Jupiter, we've got quite the photoshoot planned for you. Today, our Juno spacecraft is flying directly over the Great Red Spot, kicking off the first-ever close-up study of this iconic storm and passing by at an altitude of only 5,600 miles (9,000 kilometers). In honor of this historic event, below are 10 things to know about the planet's most famous feature.

Solar System: Things To Know This Week

1. A Storm That Puts Others to Shame

The Great Red Spot is a gigantic, high-pressure, ancient storm at Jupiter's southern hemisphere that's one of the longest lasting in the solar system. It's so large, about 1.3 Earths could fit inside of it. And you can bet you'll get swept away—the storm's tumultuous winds peak at about 400 mph.

2. How Old Is It? 

The Great Red Spot has been swirling wildly over Jupiter's skies for the past 150 years—maybe even much longer. While people saw a big spot on Jupiter when they started stargazing through telescopes in the 1600s, it's still unclear whether they were looking at a different storm. Today, scientists know the Great Red Spot has been there for a while, but they still struggle to learn what causes its swirl of reddish hues.

Solar System: Things To Know This Week

3. Time for That Close-Up 

Juno will fly over the Great Red Spot about 12 minutes after the spacecraft makes the closest approach to Jupiter of its current orbit at 6:55 p.m. on July 10, PDT (9:55 p.m. on July 10, EDT; 1:55 a.m. on July 11, Universal Time). Juno entered orbit around Jupiter on July 4, 2016.

4. Oh, So Mysterious 

Understanding the Great Red Spot is not easy, and it's mostly Jupiter's fault. The planet a thousand times as big as Earth and consists mostly of gas. A liquid ocean of hydrogen surrounds its core, and the atmosphere consists mostly of hydrogen and helium. That translates into no solid ground (like we have on Earth) to weaken storms. Also, Jupiter's clouds make it hard to gather clear observations of its lower atmosphere. 

image

This false-color image of Jupiter was taken on May 18, 2017, with a mid-infrared filter centered at a wavelength of 8.8 microns, at the Subaru Telescope in Hawaii, in collaboration with observations of Jupiter by NASA's Juno mission. Credit: NAOJ/NASA/JPL-Caltech

5. Help From Hawaii 

To assist Juno's investigation of the giant planet's atmosphere, Earth-based telescopes lent their helpful eyes. On May 18, 2017, the Gemini North telescope and the Subaru Telescope—both located on Hawaii's Mauna Kea peak—simultaneously examined Jupiter in very high resolutions at different wavelengths. These latest observations helped provide information about the Great Red Spot's atmospheric dynamics at different depths and at other regions of Jupiter.

6. Curious Observations 

Observations from Subaru showed the Great Red Spot "had a cold and cloudy interior increasing toward its center, with a periphery that was warmer and clearer," said Juno science team member Glenn Orton of our Jet Propulsion Laboratory, Pasadena, California. "A region to its northwest was unusually turbulent and chaotic, with bands that were cold and cloudy, alternating with bands that were warm and clear."

Solar System: Things To Know This Week

This composite, false-color infrared image of Jupiter reveals haze particles over a range of altitudes, as seen in reflected sunlight. It was taken using the Gemini North telescope in Hawaii on May 18, 2017, in collaboration with observations of Jupiter by our Juno mission. Credits: Gemini Observatory/AURA/NSF/NASA/JPL-Caltech

7. Hot in Here 

Scientists were stumped by a particular question: Why were the temperatures in Jupiter's upper atmosphere comparable to those found at Earth, even though Jupiter is more than five times the distance from the sun? If the sun isn't the heat source, then what is? Turns out, the storm in the Great Red Spot produces two kinds of turbulent energy waves that collide and heat the upper atmosphere. Gravity waves are much like how a guitar string moves when plucked, while acoustic waves are compressions of the air (sound waves). Heating in the upper atmosphere 500 miles (800 kilometers) above the Great Red Spot is thought to be caused by a combination of these two wave types "crashing," like ocean waves on a beach.

Solar System: Things To Know This Week

8. Color Theory 

Scientists don't know exactly how the Great Red Spot's rich colors formed. Studies predict Jupiter's upper atmosphere has clouds consisting of ammonia, ammonium hydrosulfide, and water, but it's still unclear how or even whether these chemicals react. "We're talking about something that only makes up a really tiny portion of the atmosphere," said Amy Simon, an expert in planetary atmospheres at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "That's what makes it so hard to figure out exactly what makes the colors that we see." Over at NASA's Jet Propulsion Laboratory in Pasadena, California, researchers concluded that the ruddy color is likely a product of simple chemicals being broken apart by sunlight in the planet's upper atmosphere. "Our models suggest most of the Great Red Spot is actually pretty bland in color, beneath the upper cloud layer of reddish material," said Kevin Baines, a Cassini scientist at JPL.

9. Been There, Haven't Seen That 

In January and February 1979, NASA's Voyager 1 spacecraft zoomed toward Jupiter, capturing images of the Great Red Spot during its approach. Still, we've never been as close as we're about to get during Juno's flyover on July 10.

image

10. Simply Beautiful 

This image of a crescent Jupiter and the iconic Great Red Spot was created by a citizen scientist, Roman Tkachenko, using data from Juno's JunoCam instrument. JunoCam's raw images are available here for the public to peruse and enhance.Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

How Exactly Do We Plan to Bring an Asteroid Sample Back to Earth?

Our OSIRIS-REx spacecraft launches tomorrow, and will travel to a near-Earth asteroid, called Bennu. While there, it will collect a sample to bring back to Earth for study. But how exactly do we plan to get this spacecraft there and bring the sample back?

image

Here’s the plan:

After launch, OSIRIS-REx will orbit the sun for a year, then use Earth’s gravitational field to assist it on its way to Bennu. In August 2018, the spacecraft’s approach to Bennu will begin.

image

The spacecraft will begin a detailed survey of Bennu two months after slowing to encounter the asteroid. The process will last over a year, and will include mapping of potential sample sites. After the selection of the final site, the spacecraft will briefly touch the surface of Bennu to retrieve a sample.

image

To collect a sample, the sampling arm will make contact with the surface of Bennu for about five seconds, during which it will release a burst of nitrogen gas. The procedure will cause rocks and surface material to be stirred up and captured in the sampler head. The spacecraft has enough nitrogen to allow three sampling attempts, to collect between 60 and 2000 grams (2-70 ounces).

image

In March 2021, the window for departure from the asteroid will open, and OSIRIS-REx will begin its return journey to Earth, arriving two and a half years later in September 2023.

image

The sample return capsule will separate from the spacecraft and enter the Earth’s atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range.

image

For two years after the sample return, the science team will catalog the sample and conduct analysis. We will also preserve at least 75% of the sample for further research by scientists worldwide, including future generations of scientists.

The Spacecraft

image

The OSIRIS-REx spacecraft is outfitted with some amazing instruments that will help complete the mission. Here’s a quick rundown:

The OCAMS Instrument Suite

image

PolyCam (center), MapCam (left) and SamCam (right) make up the camera suite on the spacecraft. These instruments are responsible for most of the visible light images that will be taken by the spacecraft.

OSIRIS-REx Laser Altimeter (OLA)

image

This instrument will provide a 3-D map of asteroid Bennu’s shape, which will allow scientists to understand the context of the asteroid’s geography and the sample location.

OSIRIS-REx Thermal Emission Spectrometer (OTES)

image

The OTES instrument will conduct surveys to map mineral and chemical abundances and will take the asteroid Bennu’s temperature.

OSIRIS-REx Visible and Infrared Spectrometer (OVIRS)

image

This instrument will measure visible and near infrared light from the asteroid. These observations could be used to identify water and organic materials.

Regolith X-Ray Imaging Spectrometer (REXIS)

image

REXIS can image X-ray emission from Bennu in order to provide an elemental abundance map of the asteroid’s surface.

Touch-and-Go Sample Arm Mechanism (TAGSAM)

image

This part of the spacecraft will be responsible for collecting a sample from Bennu’s surface.

Watch Launch and More!

image

OSIRIS-REx Talk Wednesday, Sept. 7 at noon EDT Join us for a discussion with representatives from the mission’s science and engineering teams. This talk will include an overview of the spacecraft and the science behind the mission.  Social media followers can ask questions during this event by using #askNASA. Watch HERE. 

Uncovering the Secrets of Asteroids Wednesday, Sept. 7 at 1 p.m. EDT During this panel, our scientists will discuss asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. Social media followers can ask questions during this event by using #askNASA. Watch HERE. 

LAUNCH COVERAGE!

Thursday, Sept. 8 starting at 5:30 p.m. EDT Watch the liftoff of the United Launch Alliance’s (ULA) Atlas V rocket from Kennedy Space Center in Florida at 7:05 p.m. 

Full coverage is available online starting at 4:30 p.m. Watch HERE

We will also stream the liftoff on Facebook Live starting at 6:50 p.m. EDT. Watch HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
During A Recent Close Flyby Of The Gas Giant Jupiter, Our Juno Spacecraft Captured This Stunning Series

During a recent close flyby of the gas giant Jupiter, our Juno spacecraft captured this stunning series of images showing swirling cloud patterns on the planet’s south pole. At first glance, the series might appear to be the same image repeated. But closer inspection reveals slight changes, which are most easily noticed by comparing the far-left image with the far-right image.

Directly, the images show Jupiter. But, through slight variations in the images, they indirectly capture the motion of the Juno spacecraft itself, once again swinging around a giant planet hundreds of millions of miles from Earth.

Juno captured this color-enhanced time-lapse sequence of images on Feb. 7 between 10:21 a.m. and 11:01 a.m. EST. At the time, the spacecraft was between 85,292 to 124,856 miles (137,264 to 200,937 kilometers) from the tops of the clouds of the planet with the images centered on latitudes from 84.1 to 75.5 degrees south.

Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What’s the best piece of advice you have ever received?


Tags
Loading...
End of content
No more pages to load
  • ava1enzue1a
    ava1enzue1a reblogged this · 2 years ago
  • ava1enzue1a
    ava1enzue1a liked this · 2 years ago
  • lekaisernoir
    lekaisernoir liked this · 3 years ago
  • svria
    svria liked this · 3 years ago
  • cyberwrite
    cyberwrite liked this · 3 years ago
  • eclectic-like-furniture
    eclectic-like-furniture reblogged this · 3 years ago
  • dragons-barb
    dragons-barb liked this · 3 years ago
  • matzifer
    matzifer liked this · 3 years ago
  • trulyyoursvenus
    trulyyoursvenus liked this · 3 years ago
  • luminouslumity
    luminouslumity reblogged this · 3 years ago
  • luminouslumity
    luminouslumity liked this · 3 years ago
  • glitchinthevisuals
    glitchinthevisuals liked this · 3 years ago
  • progrockers
    progrockers liked this · 3 years ago
  • just-a-shit-ton-of-trama
    just-a-shit-ton-of-trama liked this · 3 years ago
  • kcftliod
    kcftliod liked this · 3 years ago
  • horizon32
    horizon32 liked this · 3 years ago
  • charswithbatsmybeloved
    charswithbatsmybeloved reblogged this · 3 years ago
  • charswithbatsmybeloved
    charswithbatsmybeloved liked this · 3 years ago
  • chubbychoker420ghc
    chubbychoker420ghc reblogged this · 3 years ago
  • chubbychoker420ghc
    chubbychoker420ghc liked this · 3 years ago
  • yunomonoko
    yunomonoko liked this · 3 years ago
  • art-vision
    art-vision liked this · 3 years ago
  • thiefylilelf
    thiefylilelf liked this · 3 years ago
  • grapecola
    grapecola liked this · 3 years ago
  • nmcatmom
    nmcatmom liked this · 3 years ago
  • mrgneiss
    mrgneiss liked this · 3 years ago
  • seledreamas
    seledreamas liked this · 3 years ago
  • realspaceships
    realspaceships liked this · 3 years ago
  • andtheswordwentsnickersnack
    andtheswordwentsnickersnack liked this · 3 years ago
  • vf7pr
    vf7pr liked this · 3 years ago
  • akbey1913
    akbey1913 liked this · 3 years ago
  • drowninginfandomsus
    drowninginfandomsus liked this · 3 years ago
  • vibinsince1705
    vibinsince1705 liked this · 3 years ago
  • frankensteins-sweet-creature
    frankensteins-sweet-creature liked this · 3 years ago
  • bluemelaninqueen
    bluemelaninqueen reblogged this · 3 years ago
  • bluemelaninqueen
    bluemelaninqueen liked this · 3 years ago
  • twitchygrr
    twitchygrr liked this · 3 years ago
  • goldfoxes
    goldfoxes liked this · 3 years ago
  • amberrockstar
    amberrockstar liked this · 3 years ago
  • grimcatastrophe
    grimcatastrophe liked this · 3 years ago
  • glacier--freeze
    glacier--freeze reblogged this · 3 years ago
  • glacier--freeze
    glacier--freeze liked this · 3 years ago
  • traumallamarama
    traumallamarama liked this · 3 years ago
  • golddragon387
    golddragon387 liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags