We’re Sending People To Space This Week 🚀 Here’s Your Chance To Ask A Past Flight Director In

We’re Sending People To Space This Week 🚀 Here’s Your Chance To Ask A Past Flight Director In

We’re sending people to space this week 🚀 Here’s your chance to ask a past Flight Director in Mission Control your questions!

Ginger Kerrick will be taking your questions in an Answer Time session on Friday, September 27 from 12pm - 1 pm ET here on NASA’s Tumblr! Ginger served as a Flight Director in Mission Control for 11 years and is now the Flight Integration Division Chief at Johnson Space Center. Find out what it’s like to send humans to space and learn more about her position as our first female Hispanic flight director. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!

Ginger Kerrick, as a child, dreamed of growing up to be either a basketball player or an astronaut. When neither dream came to fruition, Kerrick developed a fresh perspective – best summed up by the phrase “It just wasn’t meant to be” – and later became part of our team, serving in the Mission Control Center at the NASA Johnson Space Center as a Flight Director who has, to date, supported 13 International Space Station and five joint space shuttle missions. It was there that Kerrick, a few years earlier, became the first non-astronaut Capsule Communicator (CapCom), the flight controller that speaks directly to the astronaut crew in space, on behalf of the rest of the Mission Control team. 

Today, Ginger Kerrick is the Flight Integration Division Chief at our Johnson Space Center. Her department is responsible for crew safety and training, among a list of other duties. She has worked for NASA since 1994, and interned here while she was earning a bachelor’s degree in physics from Texas Tech University. She also has a master’s degree in physics from the university.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago

sorry, i don't know much about earth science (though it sounds very intriguing), but - what exactly is it that you do? does it take a lot of time? is it fun but challenging? was it hard to get your job? have you always wanted to work with earth science?


Tags
1 year ago

out of all the roles you've had in the past, which one do you feel has best prepared you to be a flight director?


Tags
9 years ago

Astronomy Night at the White House

NASA took over the White House Instagram today in honor of Astronomy Night to share some incredible views of the universe and the world around us. Check out more updates from the astronauts, scientists, and students on South Lawn.

image

Here’s a nighttime view of Washington, D.C. from the astronauts on the International Space Station on October 17. Can you spot the White House? 

image

Check out this look at our sun taken by NASA’s Solar Dynamics Observatory. The SDO watches the sun constantly, and it captured this image of the sun emitting a mid-level solar flare on June 25. Solar flares are powerful bursts of radiation. Harmful radiation from a flare can’t pass through Earth’s atmosphere to physically affect humans on the ground. But when they’re intense enough, they can disturb the atmosphere in the layer where GPS and communications signals travel.

image

Next up is this incredible view of Saturn’s rings, seen in ultraviolet by NASA’s Cassini spacecraft. Hinting at the origin of the rings and their evolution, this ultraviolet view indicates that there’s more ice toward the outer part of the rings than in the inner part.

image

Take a look at the millions of galaxies that populate the patch of sky known as the COSMOS field, short for Cosmic Evolution Survey. A portion of the COSMOS field is seen here by NASA’s Spitzer Space Telescope. Even the smallest dots in this image are galaxies, some up to 12 billion light-years away. The picture is a combination of infrared data from Spitzer (red) and visible-light data (blue and green) from Japan’s Subaru telescope atop Mauna Kea in Hawaii. The brightest objects in the field are more than ten thousand times fainter than what you can see with the naked eye.

image

This incredible look at the Cat’s Eye nebula was taken from a composite of data from NASA’s Chandra X-ray Observatory and Hubble Space Telescope. This famous object is a so-called planetary nebula that represents a phase of stellar evolution that the Sun should experience several billion years from now. When a star like the Sun begins to run out of fuel, it becomes what is known as a red giant. In this phase, a star sheds some of its outer layers, eventually leaving behind a hot core that collapses to form a dense white dwarf star. A fast wind emanating from the hot core rams into the ejected atmosphere, pushes it outward, and creates the graceful filamentary structures seen with optical telescopes.

image

This view of the International Space Station is a composite of nine frames that captured the ISS transiting the moon at roughly five miles per second on August 2. The International Space Station is a unique place—a convergence of science, technology, and human innovation that demonstrates new technologies and makes research breakthroughs not possible on Earth. As the third brightest object in the sky, the International Space Station is easy to see if you know when to look up. You can sign up for alerts and get information on when the International Space Station flies over you at spotthestation.nasa.gov. Thanks for following along today as NASA shared the view from astronomy night at the White House. Remember to look up and stay curious!

9 months ago
Long shadows highlight Buzz Aldrin’s bootprint in the fine, gray lunar soil on the surface of the Moon. The bootprint looks somewhat rectangular, but is rounded at the toe and heel, with several parallel tread lines. Even in this small portion of the Moon’s surface, we can see that it’s pitted. This photo was taken during Neil Armstrong and Buzz Aldrin’s historic moonwalk on July 20, 1969. Credit: NASA

One Giant Leap for Mankind

Millions of people around the globe will come together for the Paris 2024 Olympic Games later this month to witness a grand event—the culmination of years of training and preparation.

Fifty-five years ago this July, the world was watching as a different history-changing event was unfolding: the Apollo 11 mission was landing humans on the surface of another world for the first time. An estimated 650 million people watched on TV as Neil Armstrong reached the bottom of the ladder of the lunar module on July 20, 1969, and spoke the words, “That’s one small step for [a] man, one giant leap for mankind.”

While the quest to land astronauts on the Moon was born from the space race with the Soviet Union during the Cold War, this moment was an achievement for the whole of humanity. To mark the world-embracing nature of the Moon landing, several tokens of world peace were left on the Moon during the astronauts’ moonwalk.

View of the commemorative plaque attached to the leg of the Apollo 11 Lunar Module (LM), Eagle under the LM’s ladder, engraved with the following words: “Here men from the planet Earth first set foot upon the Moon July 1969 A.D. We came in peace for all of mankind.” It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin, Jr., LM pilot along with the signature of the U.S. President Richard M. Nixon. Credit: NASA

“We came in peace for all mankind”

These words, as well as drawings of Earth’s western and eastern hemispheres, are etched on a metal plaque affixed to a leg of the Apollo 11 lunar lander. Because the base of the lander remained on the Moon after the astronauts returned, it is still there today as a permanent memorial of the historic landing.

Close-up of the small silicon disc left on the surface of the Moon by the Apollo 11 astronauts. Messages in several languages are imprinted into the disc. Around its outer edge are the words “From Planet Earth” and “July 1969.” Credit: NASA

Microscopic messages from kings, queens, and presidents

Another artifact left on the Moon by the Apollo 11 astronauts is a small silicon disc etched with goodwill messages from leaders of 74 countries around the world. Each message was reduced to be smaller than the head of a pin and micro-etched on a disc roughly 1.5 inches (3.8 cm) in diameter. Thailand’s message, translated into English, reads: "The Thai people rejoice in and support this historic achievement of Earth men, as a step towards Universal peace."

Curious to read what else was inscribed on the disk? Read the messages.

An olive branch made of gold that was left on the Moon by the Apollo 11 astronauts as a symbol of peace. Credit: NASA

An ancient symbol

The olive branch, a symbol of peace and conciliation in ancient Greek mythology, also found its way to the Moon in July 1969. This small olive branch made of gold was left on the lunar surface during Neil Armstrong and Buzz Aldrin’s 2.5-hour moonwalk. The olive branch also featured on the Apollo 11 mission patches sewed on the crew’s spacesuits. Designed in part by command module pilot Michael Collins, the insignia shows a bald eagle landing on the Moon holding an olive branch in its talons.

In the blackness of space, the Earth is ¾ illuminated in this photo taken on July 17, 1969. Africa and the Arabian Peninsula are visible in this spectacular photo taken by the Apollo 11 astronauts on their trans-lunar coast toward the Moon. Credit: NASA

We go together

As NASA’s Artemis program prepares to again land astronauts on the Moon, including the first woman and the first person of color, this time we’re collaborating with commercial and international partners. Together we will make new scientific discoveries, establish the first long-term presence on the Moon, and inspire a new generation of explorers.

Is aerospace history your cup of tea? Be sure to check out more from NASA’s past at www.nasa.gov/history.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

What was the hardest part in training to go to space?

One of the most challenging parts of space training was learning how to use the space suit.  We weigh over 400 pounds in the space suit, and since it is pressurized, each movement of your hands is like working against an exercise ball.  Since the suit needs to be quite bulky in order to protect us from the environment of space (vacuum, radiation, micrometeoroids, extreme temperature) while doing a spacewalk, it makes body movements a bit awkward.  Dexterity is quite compromised with the bulky gloves as well.  Although it is challenging, however, it is likely also the most rewarding, because, well, you are in a SPACE SUIT!!!  Hopefully I’ll get to do a spacewalk and look down on the our planet from above on a mission to the International Space Station in a few years. 


Tags
8 years ago

Getting to Mars: 4 Things We’re Doing Now

We’re working hard to send humans to Mars in the 2030s. Here are just a few of the things we’re doing now that are helping us prepare for the journey:

1. Research on the International Space Station

image

The International Space Station is the only microgravity platform for the long-term testing of new life support and crew health systems, advanced habitat modules and other technologies needed to decrease reliance on Earth.

image

When future explorers travel to the Red Planet, they will need to be able to grow plants for food, atmosphere recycling and physiological benefits. The Veggie experiment on space station is validating this technology right now! Astronauts have grown lettuce and Zinnia flowers in space so far.

image

The space station is also a perfect place to study the impacts of microgravity on the human body. One of the biggest hurdles of getting to Mars in ensuring that humans are “go” for a long-duration mission. Making sure that crew members will maintain their health and full capabilities for the duration of a Mars mission and after their return to Earth is extremely important. 

image

Scientists have solid data about how bodies respond to living in microgravity for six months, but significant data beyond that timeframe had not been collected…until now! Former astronaut Scott Kelly recently completed his Year in Space mission, where he spent a year aboard the space station to learn the impacts of microgravity on the human body.

A mission to Mars will likely last about three years, about half the time coming and going to Mars and about half the time on the Red Planet. We need to understand how human systems like vision and bone health are affected and what countermeasures can be taken to reduce or mitigate risks to crew members.

2. Utilizing Rovers & Tech to Gather Data

image

Through our robotic missions, we have already been on and around Mars for 40 years! Before we send humans to the Red Planet, it’s important that we have a thorough understanding of the Martian environment. Our landers and rovers are paving the way for human exploration. For example, the Mars Reconnaissance Orbiter has helped us map the surface of Mars, which will be critical in selecting a future human landing site on the planet.

image

Our Mars 2020 rover will look for signs of past life, collect samples for possible future return to Earth and demonstrate technology for future human exploration of the Red Planet. These include testing a method for producing oxygen from the Martian atmosphere, identifying other resources (such as subsurface water), improving landing techniques and characterizing weather, dust and other potential environmental conditions that could affect future astronauts living and working on Mars.

image

We’re also developing a first-ever robotic mission to visit a large near-Earth asteroid, collect a multi-ton boulder from its surface and redirect it into a stable orbit around the moon. Once it’s there, astronauts will explore it and return with samples in the 2020s. This Asteroid Redirect Mission (ARM) is part of our plan to advance new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.

3. Building the Ride

Okay, so we’ve talked about how we’re preparing for a journey to Mars…but what about the ride? Our Space Launch System, or SLS, is an advanced launch vehicle that will help us explore beyond Earth’s orbit into deep space. SLS will be the world’s most powerful rocket and will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars.

image

In the rocket's initial configuration it will be able to take 154,000 pounds of payload to space, which is equivalent to 12 fully grown elephants! It will be taller than the Statue of Liberty and it’s liftoff weight will be comparable to 8 fully-loaded 747 jets. At liftoff, it will have 8.8 million pounds of thrust, which is more than 31 times the total thrust of a 747 jet. One more fun fact for you…it will produce horsepower equivalent to 160,000 Corvette engines!

image

Sitting atop the SLS rocket will be our Orion spacecraft. Orion will be the safest most advanced spacecraft ever built, and will be flexible and capable enough to carry humans to a variety of destinations. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities.

4. Making it Sustainable

When humans get to Mars, where will they live? Where will they work? These are questions we’ve already thought about and are working toward solving. Six partners were recently selected to develop ground prototypes and/or conduct concept studies for deep space habitats.

image

These NextSTEP habitats will focus on creating prototypes of deep space habitats where humans can live and work independently for months or years at a time, without cargo supply deliveries from Earth.

image

Another way that we are studying habitats for space is on the space station. In June, the first human-rated expandable module deployed in space was used. The Bigelow Expandable Activity Module (BEAM) is a technology demonstration to investigate the potential challenges and benefits of expandable habitats for deep space exploration and commercial low-Earth orbit applications.

Our journey to Mars requires preparation and research in many areas. The powerful new Space Launch System rocket and the Orion spacecraft will travel into deep space, building on our decades of robotic Mars explorations, lessons learned on the International Space Station and groundbreaking new technologies.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

View these celestial beauties taken by the Hubble Space Telescope and released as a set of views in a modern day "Messier Catalog." 

Spotting comets was all the rage in the middle of the 18th century, and at the forefront of the comet hunt was a young French astronomer named Charles Messier. In 1774, in an effort to help fellow comet seekers steer clear of astronomical objects that were not comets (something that frustrated his own search for these elusive entities), Messier published the first version of his “Catalog of Nebulae and Star Clusters,” a collection of celestial objects that weren’t comets and should be avoided during comet hunting. Today, rather than avoiding these objects, many amateur astronomers actively seek them out as interesting targets to observe with backyard telescopes, binoculars or sometimes even with the naked eye.

Hubble’s version of the Messier catalog includes eight newly processed images never before released by NASA. The images were extracted from more than 1.3 million observations that now reside in the Hubble data archive. Some of these images represent the first Hubble views of the objects, while others include newer, higher resolution images taken with Hubble’s latest cameras.

Learn more: https://www.nasa.gov/content/goddard/hubble-s-messier-catalog

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Throwback Thursday: Apollo 11 Moon Landing Questions Answered

image

The Apollo 11 Moon landing was a feat for the ages. With the help of the NASA History Office, we’ve identified some of the most frequently asked questions surrounding the first time humans walked on the surface of another world. Click here to check out our post from last week. 

Is it true that the Apollo guidance computer had less computing power than a smartphone?

image

Believe it or not, yes! The Apollo guidance computer not only had less computing power than a smartphone, it had less computing power than the calculator you use in your algebra class. The computer, designed by MIT, had a fixed memory of 36 kilobytes and an erasable memory of 2 kilobytes. That’s fairly advanced for the time! 

Why did Buzz Aldrin take a picture of his bootprint?

image

A substantial portion of the Apollo 11 crew’s checklist was taking photographs. Taking closeup shots of the "very fine” moon dust was a critical component of mission objectives and helped scientists better understand the surface makeup of the Moon. 

image

Armstrong and Aldrin wore lunar overboots over their main spacesuit boots to protect them from ultraviolet radiation and hazardous rocks. To make room for the nearly 50 pounds (22 kilograms) of lunar samples, the crew left all their pairs of boots on the Moon. But don’t worry; they wouldn’t get charged an overweight baggage fee anyway. 

image

What were the first words spoken from the surface of the Moon?

image

That’s somewhat subject to interpretation. Once the Lunar Module’s surface sensor touched the surface, Buzz Aldrin called out "Contact Light” to Mission Control. After the engine shut down, he said “ACA out of detent,” simply meaning that the Eagle’s Attitude Control Assembly, or control stick, was moved from its center position. 

But the first words heard by the entire world after Apollo 11 touched down were delivered by Neil Armstrong: "Houston, Tranquility Base here. The Eagle has landed.” More than six hours later, Armstrong stepped off the Eagle’s footpad and delivered the most famous words ever spoken from the surface of another world: "That's one small step for [a] man, one giant leap for mankind."  And although we have a hard time hearing it in the recording, Armstrong clarified in a post-flight interview that he actually said, “That’s one small step for a man...”

What will the first woman and the next man to go to the Moon say when they first step on its surface?

image

We can’t say for sure what our next moonwalkers will decide to say, but perhaps the better question is: What would be your first words if you were to land on the Moon? There’s no doubt that the astronauts of the Artemis Generation will inspire a new crop of explorers the way Apollo Generation astronauts did 50 years ago.  Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Meet America’s #NewAstronauts

We’re so excited to introduce America’s new astronauts! After evaluating a record number of applications, we’re proud to present our 2017 astronaut class!

Meet America’s #NewAstronauts

These 12 new astronaut candidates were chosen from more than 18,300 people who submitted applications from December 2015 to February 2016. This was more than double the previous record of 8,000 set in 1978.

image

Meet them…

Kayla Barron

image

This Washington native graduated from the U.S. Naval Academy with a Bachelor’s degree in Systems Engineering. A Gates Cambridge Scholar, Barron earned a Master’s degree in Nuclear Engineering from the University of Cambridge.

She enjoys hiking, backpacking, running and reading.

Zena Cardman

image

Zena is a native of Virginia and completed a Bachelor of Science degree in Biology and Master of Science degree in Marine Sciences at The University of North Carolina, Chapel Hill. Her research has focused on microorganisms in subsurface environments, ranging from caves to deep sea sediments.

In her free time, she enjoys canoeing, caving, raising backyard chickens and glider flying.

Raja Chari

image

Raja is an Iowa native and graduated from the U.S. Air Force Academy in 1999 with Bachelor’s degrees in Astronautical Engineering and Engineering Science. He continued on to earn a Master’s degree in Aeronautics and Astronautics from Massachusetts Institute of Technology and graduated from the U.S. Naval Test Pilot School.

He has accumulated more than 2,000 hours of flight time in the F-35, F-15, F-16 and F-18 including F-15E combat missions in Operation Iraqi Freedom.

Matthew Dominick

image

This Colorado native earned a Bachelor of Science in Electrical Engineering from the University of San Diego and a Master of Science degree in Systems Engineering from the Naval Postgraduate School. He graduated from U.S. Naval Test Pilot School.

He has more than 1,600 hours of flight time in 28 aircraft, 400 carrier-arrested landigns and 61 combat missions.

Bob Hines

image

Bob is a Pennsylvania native and earned a Bachelor’s degree in Aerospace Engineering from Boston University. He is a graduate of the U.S. Air Force Test Pilot School, where he earned a Master’s degree in Flight Test Engineering. He continued on to earn a Master’s degree in Aerospace Engineering from the University of Alabama.

During the last five years, he has served as a research pilot at NASA’s Johnson Space Center.

Warren Hoburg

image

Nicknamed “Woody”, this Pennsylvania native earned a Bachelor’s degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology (MIT) and a Doctorate in Electrical Engineering and Computer Science from the University of California, Berkley.

He is an avid rock climber, moutaineer and pilot.

Jonny Kim

image

This California native trained and operated as a Navy SEAL, completing more than 100 combat operations and earning a Silver Star and Bronze Star with Combat “V”. Afterward, he went on to complete a degree in Mathematics at the University of San Diego and a Doctorate of Medicine at Harvard Medical School.

His interests include spending time with his family, volunteering with non-profit vertern organizations, academic mentoring, working out and learning new skills.

Robb Kulin

image

Robb is an Alaska native and earned a Bachelor’s degree in Mechanical Engineering from the University of Denver, before going on to complete a Master’s degree in Materials Science and a Doctorate in Engineering at the University of California, San Diego.

He is a private pilot and also enjoys playing piano, photography, packrafting, running, cycling, backcountry skiing and SCUBA diving.

Jasmin Moghbeli

image

This New York native earned a Bachlor’s degree in Aerospace Engineering with Information Technology at the Massachusetts Institute of Technology, followed by a Master’s degree in Aerospace Engineering from the Naval Postgraduate School.

She is also a distinguished graduate of the U.S. Naval Test Pilot School and has accumulated mofre than 1,600 hours of flight time and 150 combat missions.

Loral O’Hara

image

This Texas native earned a Bachelor of Science degree in Aerospace Engineering at the University of Kansas and a Master of Science degree in Aeronautics and Astronautics from Purdue University.

In her free time, she enjoys working in the garage, traveling, surfing, diving, flying, sailing, skiing, hiking/orienteering, caving, reading and painting.

Frank Rubio

image

Frank is a Florida native and graduated from the U.S. Military Academy and earned a Doctorate of Medicine from the Uniformed Services University of the Health Sciences.

He is a board certified family physician and flight surgeon. At the time of his selection, he was serving in the 10th Special Forces Group (Airborne).

Jessica Watkins

image

This Colorado native earned a Bachelor’s degree in Geological and Environmental Sciences at Stanford University, and a Doctorate in Geology from the University of California, Los Angeles (UCLA).

She enjoys soccer, rock climbing, skiing and creative writing.

image

After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on our new Orion spacecraft and Space Launch System rocket.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

5 Out-of-This World Technologies Developed for Our Webb Space Telescope

Our James Webb Space Telescope is the most ambitious and complex space science observatory ever built. It will study every phase in the history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

image

In order to carry out such a daring mission, many innovative and powerful new technologies were developed specifically to enable Webb to achieve its primary mission.  

Here are 5 technologies that were developed to help Webb push the boundaries of space exploration and discovery:

1. Microshutters

image

Microshutters are basically tiny windows with shutters that each measure 100 by 200 microns, or about the size of a bundle of only a few human hairs. 

The microshutter device will record the spectra of light from distant objects (spectroscopy is simply the science of measuring the intensity of light at different wavelengths. The graphical representations of these measurements are called spectra.)

image

Other spectroscopic instruments have flown in space before but none have had the capability to enable high-resolution observation of up to 100 objects simultaneously, which means much more scientific investigating can get done in less time. 

Read more about how the microshutters work HERE.

2. The Backplane

image

Webb's backplane is the large structure that holds and supports the big hexagonal mirrors of the telescope, you can think of it as the telescope’s “spine”. The backplane has an important job as it must carry not only the 6.5 m (over 21 foot) diameter primary mirror plus other telescope optics, but also the entire module of scientific instruments. It also needs to be essentially motionless while the mirrors move to see far into deep space. All told, the backplane carries more than 2400kg (2.5 tons) of hardware.

image

This structure is also designed to provide unprecedented thermal stability performance at temperatures colder than -400°F (-240°C). At these temperatures, the backplane was engineered to be steady down to 32 nanometers, which is 1/10,000 the diameter of a human hair!

Read more about the backplane HERE.

3. The Mirrors

image

One of the Webb Space Telescope's science goals is to look back through time to when galaxies were first forming. Webb will do this by observing galaxies that are very distant, at over 13 billion light years away from us. To see such far-off and faint objects, Webb needs a large mirror. 

Webb's scientists and engineers determined that a primary mirror 6.5 meters across is what was needed to measure the light from these distant galaxies. Building a mirror this large is challenging, even for use on the ground. Plus, a mirror this large has never been launched into space before! 

image

If the Hubble Space Telescope's 2.4-meter mirror were scaled to be large enough for Webb, it would be too heavy to launch into orbit. The Webb team had to find new ways to build the mirror so that it would be light enough - only 1/10 of the mass of Hubble's mirror per unit area - yet very strong. 

Read more about how we designed and created Webb’s unique mirrors HERE.

4. Wavefront Sensing and Control

image

Wavefront sensing and control is a technical term used to describe the subsystem that was required to sense and correct any errors in the telescope’s optics. This is especially necessary because all 18 segments have to work together as a single giant mirror.

The work performed on the telescope optics resulted in a NASA tech spinoff for diagnosing eye conditions and accurate mapping of the eye.  This spinoff supports research in cataracts, keratoconus (an eye condition that causes reduced vision), and eye movement – and improvements in the LASIK procedure.

Read more about the tech spinoff HERE. 

5. Sunshield and Sunshield Coating

image

Webb’s primary science comes from infrared light, which is essentially heat energy. To detect the extremely faint heat signals of astronomical objects that are incredibly far away, the telescope itself has to be very cold and stable. This means we not only have to protect Webb from external sources of light and heat (like the Sun and the Earth), but we also have to make all the telescope elements very cold so they don't emit their own heat energy that could swamp the sensitive instruments. The temperature also must be kept constant so that materials aren't shrinking and expanding, which would throw off the precise alignment of the optics.

image

Each of the five layers of the sunshield is incredibly thin. Despite the thin layers, they will keep the cold side of the telescope at around -400°F (-240°C), while the Sun-facing side will be 185°F (85°C). This means you could actually freeze nitrogen on the cold side (not just liquify it), and almost boil water on the hot side. The sunshield gives the telescope the equivalent protection of a sunscreen with SPF 1 million!

Read more about Webb’s incredible sunshield HERE. 

Learn more about the Webb Space Telescope and other complex technologies that have been created for the first time by visiting THIS page.

For the latest updates and news on the Webb Space Telescope, follow the mission on Twitter, Facebook and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • askthemutiversecom
    askthemutiversecom reblogged this · 7 months ago
  • shadynightsweets
    shadynightsweets liked this · 1 year ago
  • iglooruins
    iglooruins liked this · 1 year ago
  • angelnightingale777
    angelnightingale777 liked this · 1 year ago
  • john-erby
    john-erby liked this · 3 years ago
  • mortenone
    mortenone liked this · 3 years ago
  • i-cant-find-a-damn-url
    i-cant-find-a-damn-url liked this · 3 years ago
  • my23456
    my23456 liked this · 3 years ago
  • 2reputationpegacorns
    2reputationpegacorns liked this · 3 years ago
  • bettylovee
    bettylovee liked this · 4 years ago
  • kittycactii
    kittycactii liked this · 4 years ago
  • catpeaks
    catpeaks liked this · 4 years ago
  • mdamirhosenmunna
    mdamirhosenmunna liked this · 4 years ago
  • ideasconalas
    ideasconalas liked this · 4 years ago
  • andytired
    andytired liked this · 4 years ago
  • berat-im
    berat-im liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags