Are You Ready To #BeTheSpark?

Are You Ready to #BeTheSpark?

Students - want to modify a NASA Spinoff technology and solve a real word problem?

image

Our Optimus Prime Spinoff Promotion and Research Challenge, known as OPSPARC for short, is a student challenge that guides teams through various NASA Spinoff technologies that are in their everyday world. The teams use their imagination, creativity, and engineering skills to develop their own ideas for NASA spinoff technology.

image

Spinoffs are technologies originally created for space and modified into everyday products used here on Earth.

image

Perhaps the most widely recognized NASA spinoff, memory foam was invented by NASA-funded researchers looking for ways to keep test pilots cushioned during flights. Today, memory foam makes for more comfortable beds, couches and chairs, not to mention better shoes, movie theater seats and even football helmets.

There are more than two-thousand NASA Spinoffs They include memory foam, invisible braces, firefighting equipment, programmable pace makers, artificial limbs, scratch-resistant lenses, aircraft anti-icing systems, endangered species tracking software, cochlear implants, satellite television, long-distance telecommunications, and many, many more.

image

The deadline has been extended to February 26th for our Mission 3 student challenge. Sign up NOW here: https://opsparc.gsfc.nasa.gov/

Fans of the Hasbro TRANSFORMERS brand will pick up on the play on words between the challenge name, OPSPARC, and the "AllSpark" from the TRANSFORMERS universe. The AllSpark is what gave the TRANSFORMERS robots life and knowledge, which they use to help mankind — just like NASA spinoffs. Students from around the globe will have the opportunity to Be The Spark!

OPTIMUS PRIME and TRANSFORMERS are trademarks of Hasbro and are used with permission. © 2018 Hasbro, Inc. All Rights Reserved.

More Posts from Nasa and Others

8 years ago
Hello! Jeanette Epps here Ready To Take Your @nasa Questions!

Hello! Jeanette Epps here ready to take your @nasa questions!


Tags
3 years ago

Hi.dr.naomi.i have 2 questions.

1.Can this JAMES WEB T.S able to see Mercury, Venus and certain stars that are close to the sun either. I.

2.Why is the James Webb t.s.mirror yellow?

Any specific reason for this


Tags
4 years ago

7 Things to Know about the Perseverance Mars Rover

image

We’re set to launch the Mars 2020 Perseverance rover mission from Cape Canaveral, Florida, on July 30. The rover is loaded with scientific instruments and advanced technology, making it the largest, heaviest and most sophisticated vehicle ever sent to the Red Planet.

What is Perseverance’s mission and what will it do on Mars? Here are seven things to know:

1. Perseverance draws on the NASA – and scientific – spirit of overcoming challenges

image

Not only does it have to launch during a pandemic and land on a treacherous planet, it has to carry out its science goals:

Searching for signs of past microbial life

Mapping out the planet’s geology and climate

Collecting rock and other samples for future return to Earth

Paving the way for human exploration

We chose the name Perseverance from among the 28,000 essays submitted during the "Name the Rover" contest. Because of the coronavirus pandemic, the months leading up to the launch in particular have required creative problem solving, teamwork and determination.

2. Perseverance builds on the lessons from other Mars rovers

image

In 1997, our first Mars rover – Sojourner – showed that a robot could rove on the Red Planet. Spirit and Opportunity, which both landed in 2004, found evidence that Mars once had water before becoming a frozen desert.

Curiosity found evidence that Mars’ Gale Crater was home to a lake billions of years ago and that there was an environment that may have sustained microbial life. Perseverance aims to answer the age-old question – are there any signs that life once existed on Mars?

3. Perseverance will land in a place with high potential to find signs of ancient life

image

The rover will land in Jezero Crater, a 28-mile wide basin north of the Martian equator. A space rock hit the surface long ago, creating the large hole. Between 3 and 4 billion years ago, a river flowed into a body of water in Jezero the size of Lake Tahoe.

4. Perseverance will also collect important data about Mars’ geology and climate

image

Mars orbiters have collected images and other data about Jezero Crater from about 200 miles above, but finding signs of past life will need much closer inspection. A rover like Perseverance can look for those signs that may be related to ancient life and analyze the context in which they were found to see if the origins were biological.

5. Perseverance is the first leg of a round trip to Mars

image

This is the first rover to bring a sample-gathering system to Mars that will package promising samples of rocks and other materials for future return to Earth. NASA and ESA are working on the Mars Sample Return campaign, so we can analyze the rocks and sediment with tools too large and complex to send to space.

6. Perseverance will pave the way for human exploration of the Red Planet

image

Two packages -- one that helps the rover autonomously avoid hazards during landing (TRN) and another that gathers crucial data during the trip through Mars’ atmosphere (MEDLI2) – will help future human missions land safely and with larger payloads on other worlds.

There are two instruments that will specifically help astronauts on the Red Planet. One (MEDA) will provide key information about the planet’s weather, climate and dust activity, while a technology demonstration (MOXIE) aims to extract oxygen from Mars’ mostly carbon-dioxide atmosphere.

7. You get to ride along

7 Things To Know About The Perseverance Mars Rover

Perseverance and other parts of the Mars 2020 spacecraft feature 23 cameras, which is more than any other interplanetary mission in history. Raw images from the camera are set to be released on the mission website.

There are also three silicon chips with the names of nearly 11 million people who signed up to send their names to Mars.

And you can continue to follow the mission on Twitter and Facebook. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

How do you guys help with climate change?


Tags
5 years ago
The Trickster “Blinking Planetary”

The trickster “Blinking Planetary”

Planetary nebula NGC 6826 is located about 4,200 light years from Earth in Cygnus. When observers look directly at it through a small telescope, they typically see only the nebula’s sparkling-white central star. However, by averting one’s gaze, glancing away from the central star, the nebula’s bulbous dust clouds come into view. This optical trickery earned this planetary nebula the name the "Blinking Planetary.” 

Over the next several thousand years, the nebula will gradually disperse into space, and then the central star will slowly cool as it radiates its energy for billions of years as a white dwarf. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Top 5 Things to Know This Week

It’s only Tuesday and this week is already filled with news about our solar system. Here are the top five things to know this week:

1) Mars!

image

With five spacecraft in orbit and two rovers exploring the ground, there’s always something new and interesting about the Red Planet. Yesterday things got even more exciting when we released the most compelling evidence yet that liquid water sometimes flows on Mars today.

2) HTV-5 Cargo Ship

image

On Monday, the HTV-5 cargo ship was released from the International Space Station to burn up as it reenters Earth’s atmosphere. The HTV-5 carried a variety of experiments and supplies to the space station, and was docked for five weeks.

3) Pluto Continues to Excite

image

If you haven’t been keeping up with the weekly releases of newly downloaded pictures from our New Horizons spacecraft, you are definitely missing out. But don’t worry, we have you covered. The latest updates can be found HERE, be sure to follow along as new information is released. More images are scheduled to be featured on Oct. 1.

4) Cassini Mission

image

This week on Sept. 30, our Cassini spacecraft will reach the closest point to Saturn in it’s latest orbit around the planet. Just to put things in perspective, that will be Cassini’s 222nd orbit around Saturn! Learn more about this mission HERE.

5) What Happened to Mars’ Atmosphere?

image

Believe it or not, the Martian atmosphere we see today used to be much more substantial many years ago. What happened? Our Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been in orbit around Mars for one Earth year, searching for the answers. Learn more HERE.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
3 years ago

Photographing Planets with the Roman Space Telescope

Nearly 100 years ago, astronomer Bernard Lyot invented the coronagraph – a device that made it possible to recreate a total solar eclipse by blocking the Sun’s light. That helped scientists study the Sun’s corona, which is the outermost part of our star’s atmosphere that’s usually hidden by bright light from its surface.

Photographing Planets With The Roman Space Telescope

Our Nancy Grace Roman Space Telescope, now under construction, will test out a much more advanced version of the same thing. Roman’s Coronagraph Instrument will use special masks to block the glare from host stars but allow the light from dimmer, orbiting planets to filter through. It will also have self-flexing mirrors that will measure and subtract starlight automatically.

Photographing Planets With The Roman Space Telescope

This glare-blocking prowess is important because planets can be billions of times dimmer than their host stars! Roman’s high-tech shades will help us take pictures of planets we wouldn’t be able to photograph using any other current telescopes.

Photographing Planets With The Roman Space Telescope

Other observatories mainly use this planet-hunting method, called direct imaging, from the ground to photograph huge, bright planets called “super-Jupiters” in infrared light. These worlds can be dozens of times more massive than Jupiter, and they’re so young that they glow brightly thanks to heat left over from their formation. That glow makes them detectable in infrared light.

Photographing Planets With The Roman Space Telescope

Roman will take advanced planet-imaging tech to space to get even higher-quality pictures. And while it’s known for being an infrared telescope, Roman will actually photograph planets in visible light, like our eyes can see. That means it will be able to see smaller, older, colder worlds orbiting close to their host stars. Roman could even snap the first-ever image of a planet like Jupiter orbiting a star like our Sun.

Astronomers would ultimately like to take pictures of planets like Earth as part of the search for potentially habitable worlds. Roman’s direct imaging efforts will move us a giant leap in that direction!

Photographing Planets With The Roman Space Telescope

And direct imaging is just one component of Roman’s planet-hunting plans. The mission will also use a light-bending method called microlensing to find other worlds, including rogue planets that wander the galaxy untethered to any stars. Scientists also expect Roman to discover 100,000 planets as they cross in front of their host stars!

Photographing Planets With The Roman Space Telescope

Find out more about the Nancy Grace Roman Space Telescope on Twitter and Facebook, and about the person from which the mission draws its name.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

Earth’s Ocean and Beyond

image

Image Credit: NOAA

Earth’s ocean has been the backdrop for ancient epics, tales of fictional fish and numerous scientific discoveries. It was, and will always be, a significant piece of the Earth's story. Most of the ocean is unexplored– about 95% of this underwater realm is unseen by human eyes (NOAA). There is only one global Ocean. In fact, the ocean represents over 70% of the Earth's surface and contains 96.5% of the Earth’s water.

We and the NOAA Office of Ocean Exploration and Research work together alongside organizations like the Schmidt Ocean Institute and Ocean Exploration Trust to better understand our oceans and its processes. While space may be the final frontier, understanding our own planet helps scientists as they explore space and study how our universe came to be.

On #WorldOceansDay let’s explore how Earth’s ocean informs our research throughout the solar system.

Earth and Exoplanets

image

“In interpreting what we see elsewhere in the solar system and universe, we always compare with phenomena that we already know of on Earth...We work from the familiar toward the unknown.” - Norman Kuring, NASA Goddard

We know of only one living planet: our own. As we move to the next stage in the search for alien life, the effort will require the expertise of scientists of all disciplines. However, the knowledge and tools NASA has developed to study life on Earth will also be one of the greatest assets to the quest.

The photo above shows what Earth would look like at a resolution of 3 pixels, the same that exoplanet-discovering missions would see. What should we look for, in the search of other planets like our own? What are the unmistakable signs of life, even if it comes in a form we don't fully understand? Liquid water; every cell we know of -- even bacteria around deep-sea vents that exist without sunlight -- requires water.

Phytoplankton (Algae) Bloom vs. Atmosphere of Jupiter

image

Jupiter’s storms are mesmerizing in their beauty, captured in many gorgeous photos throughout the decades from missions like Voyager 1 and Juno. The ethereal swirls of Jupiter are the result of fluids in motion on a rotating body, which might come as a surprise, since its atmosphere is made of gas!

The eddies in Jupiter’s clouds appear very similar to those found in Earth’s ocean, like in the phytoplankton (or algae) bloom in the Baltic Sea, pictured above. The bloom was swept up in a vortex, just a part of how the ocean moves heat, carbon, and nutrients around the planet. Blooms like this, however, are not all beauty - they create “dead zones” in the areas where they grow, blooming and decaying at such a high rate that they consume all the oxygen in the water around them.

Arctic Sea Ice and Europa Ice Crust

image

While the Arctic (North Pole) and the Antarctic (South Pole) are “polar opposites,” there is one huge difference between the North and South Poles– land mass. The Arctic is ocean surrounded by land, while the Antarctic is land surrounded by ocean. The North Pole  is located in the middle of the Arctic Ocean amid waters that are almost permanently covered with constantly shifting sea ice.

By studying this sea ice, scientists can research its impact on Earth system and even formation processes on other bodies like Europa, an icy moon of Jupiter. For example, it is possible that the reddish surface features on Europa’s ice may have communicated with a global subsurface ocean layer during or after their formation. 

Aquanauts and Astronauts

image

As new missions are being developed, scientists are using Earth as a testbed. Just as prototypes for our Mars rovers made their trial runs on Earth's deserts, researchers are testing both hypotheses and technology on our oceans and extreme environments.

NEEMO, our Extreme Environment Mission Operations project, is an analog mission that sends groups of astronauts, engineers and scientists to live in Aquarius, the world's only undersea research station located off the Florida Keys, 62 feet (19 meters) below the surface. Much like space, the undersea world is a hostile, alien place for humans to live. NEEMO crew members, known as aquanauts, experience some of the same challenges there that they would on a distant asteroid, planet or moon.

Deep-sea Robotic Exploration and Space Robotic Exploration

Earth’s Ocean And Beyond

Video credit: Deep Sea Robotics/Schmidt Ocean Institute and Mars Curiosity rover/NASA

From mapping the seafloor through bathymetry to collecting samples on the surface of Mars, researchers are utilizing new technologies more than ever to explore. Satellite and robotic technology allow us to explore where humans may not be able to– yet. They teach us valuable lessons about the extreme and changing environments, science, as well as provide a platform to test new technologies.

Jezero Crater and Dvina River Delta, Arkhangelsk, Russia/Mars Delta

image

River deltas, the point where a river meets the ocean, are sites of rich sediment and incredible biodiversity. The nutrients that rivers carry to the coastlines make a fertile place for fish and shellfish to lay their eggs.

The Jezero crater on Mars (pictured in false-color on the right) has been selected as the Mars2020 landing site, and has a structure that looks much like a river delta here on Earth! Pictures from our Mars Global Surveyor orbiter show eroded ancient deposits of transported sediment long since hardened into interweaving, curved ridges of layered rock. This is one of many hints that Mars was once covered in an ancient ocean that had more water than the Arctic Ocean. Studying these deltas on Earth helps us spot them on other planets, and learning about the ocean that was once on Mars informs how our own formed.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

7 Things You Didn’t Know Came from NASA Technology

Every  year, we publish a round-up of 50 or so NASA innovations that can also be found  in our daily  lives here on Earth.

We call them spinoffs — technologies spun off from America’s space program — and this week the 2017 edition was published.  Here are some of our favorite things we bet you didn’t know use space technology.

image

1.Crash Test Cameras 

Parachutes are a key part of the landing system for many of our spacecraft, but before we send them into orbit — or beyond — we have to make sure that they’re going to work as designed. One important component of testing is a video that captures every millisecond as the chute opens, to see if it’s working and if not, what went wrong. 

Integrated Design Tools built a camera for us that could do just that: rugged and compact, it can film up to 1,000 frames per second and back up all that data almost as fast.  Now that same technology is being used to record crash tests, helping ensure that we’re all safer on the roads.

image

2.Archaeology 

We often use laser-imaging technology, or lidar, on missions in outer space. Thanks to lidar, snow was discovered on Mars, and the technology will soon help us collect a sample from an asteroid to bring home to Earth. 

To do all that, we’ve helped make smaller, more rugged, and more powerful lidar devices, which have proven useful here on Earth in a lot of ways, including for archaeologists. Lidar scans can strip away the trees and bushes to show the bare earth—offering clues to help find bones, fossils, and human artifacts hidden beneath the surface. 

image

3.Golf Clubs 

A screw is a screw, right? Or is it?  

When we were building the Space Shuttle, we needed a screw that wouldn’t loosen during the intense vibrations of launch. An advanced screw threading called Spiralock, invented by the Holmes Tool Company and extensively tested at Goddard Space Flight Center, was the answer.  

Now it’s being used in golf clubs, too. Cobra Puma Golf built a new driver with a spaceport door (designed to model the International Space Station observatory) that allows the final weight to be precisely calibrated by inserting a tungsten weight before the door is screwed on.  

And to ensure that spaceport door doesn’t pop off, Cobra Puma Golf turned to the high-tech threading that had served the Space Shuttle so well. 

image

4.Brain Surgery 

Neurosurgery tools need to be as precise as possible.

One important tool, bipolar forceps, uses electricity to cut and cauterize tissue. But electricity produces waste heat, and to avoid singeing healthy brain tissue, Thermacore Inc. used a technology we’ve been relying on since the early days of spaceflight: heat pipes.  The company, which built its expertise in part through work it has done for us over more than 30 years, created a mini heat pipe for bipolar forceps.  

The result means surgery is done more quickly, precisely — and most importantly, more safely.

image

5.Earthquake Protection 

The Ares 1 rocket, originally designed to launch crewed missions to the moon and ultimately Mars, had a dangerous vibration problem, and the usual solutions were way too bulky to work on a launch vehicle.  

Our engineers came up with a brand new technology that used the liquid fuel already in the rocket to get rid of the vibrations. And, it turns out, it works just as well with any liquid—and not just on rockets.  

An adapted version is already installed on a building in Brooklyn and could soon be keeping skyscrapers and bridges from being destroyed during earthquakes. 

image

6.Fertilizer 

When excess fertilizer washes away into ground water it’s called nutrient runoff, and it’s a big problem for the environment. It’s also a problem for farmers, who are paying for fertilizer the plant never uses. 

Ed Rosenthal, founder of a fertilizer company called Florikan, had an idea to fix both problems at once: coating the fertilizer in special polymers to control how quickly the nutrient dissolves in water, so the plant gets just the right amount at just the right time.  

Our researchers helped him perfect the formula, and the award-winning fertilizer is now used around the world — and in space. 

image

7. Cell Phone Cameras  

The sensor that records your selfies was originally designed for something very different: space photography.  

Eric Fossum, an engineer at NASA’s Jet Propulsion Laboratory, invented it in the 1990s, using technology called complementary metal-oxide semiconductors, or CMOS. The technology had been used for decades in computers, but Fossum was the first person to successfully adapt it for taking pictures. 

As a bonus, he was able to integrate all the other electronics a camera needs onto the same computer chip, resulting in an ultra-compact, energy-efficient, and very reliable imager. Perfect for sending to Mars or, you know, snapping a pic of your meal. 

To learn about NASA spinoffs, visit: https://spinoff.nasa.gov/index.html                                        


Tags
1 year ago
A time-lapse clip of a satellite dish. As it goes from day to night, the satellite changes position. Credit: NASA

9 Out-of-This-World Moments for Space Communications & Navigation in 2023

How do astronauts and spacecraft communicate with Earth?

By using relay satellites and giant antennas around the globe! These tools are crucial to NASA’s space communications networks: the Near Space Network and the Deep Space Network, which bring back science and exploration data every day.

It’s been a great year for our space communications and navigation community, who work to maintain the networks and enhance NASA’s capabilities. Keep scrolling to learn more about our top nine moments.

At night, a SpaceX rocket launches to the International Space Station from a launchpad at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA's Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company's 29th commercial resupply services mission for the agency to the International Space Station. Liftoff was at 8:28 p.m. EST.

1. In November, we launched a laser communications payload, known as ILLUMA-T, to the International Space Station. Now, ILLUMA-T and the Laser Communications Relay Demonstration (LCRD) are exchanging data and officially complete NASA’s first two-way, end-to-end laser relay system. Laser communications can send more data at once than traditional radio wave systems – think upgrading from dial-up to fiber optic internet. ILLUMA-T and LCRD are chatting at 1.2 gigabits per second (Gbps). At that rate, you could download an average movie in under a minute.

NASA’s InSight lander sits covered in dust on Mars’ copper-brown surface in a “selfie” style image. Credit: NASA

NASA’s InSight lander captured this selfie on Mars on April 24, 2022, the 1,211th Martian day, or sol, of the mission.

2. Data analyzed in 2023 from NASA’s retired InSight Mars lander provided new details about how fast the Red Planet rotates and how much it wobbles. Scientists leveraged InSight’s advanced radio technology, upgrades to the Deep Space Network, and radio signals to determine that Mars’ spin rate is increasing, while making the most precise measurements ever of Mars’ rotation.

This image is an artist rendering. A dark blue and orange background containing the Pathfinder Technology Demonstrator-3 (PTD-3) hovering in low Earth orbit relaying a red laser communications link down to an image of the Jet Propulsion Laboratory’s optical ground station in Table Mountain California. This image of the ground station is located on top of a graphic of Earth. Credit: NASA/Dave Ryan

TBIRD is demonstrating a direct-to-Earth laser communications link from low Earth orbit to a ground station on Earth.

3. We set a new high record! The TeraByte InfraRed Delivery (TBIRD) payload – also demonstrating laser communications like ILLUMA-T and LCRD – downlinked 4.8 terabytes of data at 200 Gbps in a single 5-minute pass. This is the highest data rate ever achieved by laser communications technology. To put it in perspective a single terabyte is the equivalent of about 500 hours of high-definition video.

A giant 34-meter antenna, surrounded by rolling green hills, points towards a bright blue sky in Canberra, Australia. Credit: NASA

A 34-meter (112-foot) wide antenna at Canberra Deep Space Communications Complex near Canberra, Australia.

4. This year we celebrated the Deep Space Network’s 60th anniversary. This international array of antennas located at three complexes in California, Spain, and Australia allow us to communicate with spacecraft at the Moon and beyond. Learn more about the Deep Space Network’s legacy and future advancements.

An artist's rendering depicts two astronauts on the Moon's surface. In the left foreground, a gloved astronaut hand holds a navigation device. To the right, an astronaut kneels on the lunar surface. In the background, a spacecraft sits on the Moon’s surface, partially hidden by the navigation device in the foreground. A very pale blue dot, Earth, sits in the middle of a dark blue sky. Credit: NASA/Reese Patillo

An illustration of the LunaNet architecture. LunaNet will bring internet-like services to the Moon.

5. We are bringing humans to the Moon with Artemis missions. During expeditions, astronauts exploring the surface are going to need internet-like capabilities to talk to mission control, understand their routes, and ensure overall safety. The space comm and nav group is working with international partners and commercial companies to develop LunaNet, and in 2023, the team released Draft LunaNet Specification Version 5, furthering development.

This image is an artist rendering. NASA’s Laser Communications Relay Demonstration, or LCRD, is shown floating in front of a blue star-filled space background on the right side of the image, while the Earth is shown in the distance on the left. LCRD is surrounded by three spacecraft in space and two ground stations on Earth. Communications beams are connecting LCRD to the surrounding spacecraft and ground stations. Red beams, representing laser communications, connect LCRD to the Gateway, the International Space Station, and a laser communications ground station on Earth. Blue beams, representing radio frequency communications, connect LCRD to a science mission spacecraft, the International Space Station, and a radio frequency ground station on Earth. A small half-Moon is visible in the top left corner of the image. Credit: NASA

The High-Rate Delay Tolerant Networking node launched to the International Space Station in November and will act as a high-speed path for data.

6. In addition to laser communications, ILLUMA-T on the International Space Station is also demonstrating high-rate delay/disruption tolerant networking (HDTN). The networking node is showcasing a high-speed data path and a store-and-forward technique. HDTN ensures data reaches its final destination and isn’t lost on its path due to a disruption or delay, which are frequent in the space environment.

This image is an artist rendering. A dark blue background containing small bright blue stars fills the scene. The right half of the illustration shows planet Earth surrounded by four blue satellites. The Earth is covered with many hundreds of bright blue dots and connecting lines, symbolizing communications signals traveling across the Earth’s surface. The communications lines connect to the satellites located in near-Earth orbit. Credit: NASA

The Communications Services Project (CSP) partners with commercial industry to provide networking options for future spaceflight missions.

7. The space comm and nav team is embracing the growing aerospace industry by partnering with commercial companies to provide multiple networking options for science and exploration missions. Throughout 2023, our commercialization groups engaged with over 110 companies through events, one-on-one meetings, forums, conferences, and more. Over the next decade, NASA plans to transition near-Earth services from government assets to commercial infrastructure.

In the right foreground, five people huddle around a laptop computer wearing clear protective goggles and black t-shirts. A tall, black divider with a flight operations insignia stands in the background next to a large machine. Credit: NASA

Middle and high school students solve a coding experiment during NASA's Office of STEM Engagement App Development Challenge. 

8. Every year, NASA’s Office of STEM Engagement sponsors the App Development Challenge, wherein middle and high school students must solve a coding challenge. This year, student groups coded an application to visualize the Moon’s South Pole region and display information for navigating the Moon’s surface. Our space communications and navigation experts judged and interviewed students about their projects and the top teams visited NASA’s Johnson Space Center in Houston!

At night, a SpaceX rocket launches to the International Space Station from a launchpad at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

A SpaceX Falcon 9 rocket soars upward after liftoff at the pad at 3:27 a.m. EDT on Saturday, Aug. 26, from Kennedy Space Center’s Launch Complex 39A in Florida carrying NASA’s SpaceX Crew-7 crew members to the International Space Station. Aboard SpaceX’s Dragon spacecraft are NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov.

9. The Near Space Network supported 19 launches in 2023! Launches included Commercial Crew flights to the International Space Station, science mission launches like XRISM and the SuperBIT balloon, and many more. Once in orbit, these satellites use Near Space Network antennas and relays to send their critical data to Earth. In 2023, the Near Space Network provided over 10 million minutes of communications support to missions in space.

Here’s to another year connecting Earth and space.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • dopeloveeagle
    dopeloveeagle liked this · 1 year ago
  • sam44dino
    sam44dino liked this · 3 years ago
  • levisdigbick
    levisdigbick liked this · 3 years ago
  • roastpatato
    roastpatato liked this · 4 years ago
  • mjimen19
    mjimen19 reblogged this · 4 years ago
  • ydkm47u
    ydkm47u liked this · 4 years ago
  • leftexpertbread
    leftexpertbread liked this · 4 years ago
  • jd-arts319
    jd-arts319 liked this · 4 years ago
  • gooseandahalf
    gooseandahalf liked this · 4 years ago
  • dragonfluff7
    dragonfluff7 liked this · 5 years ago
  • randomrobots
    randomrobots reblogged this · 5 years ago
  • captainhotstop
    captainhotstop liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags