Landslides In Japan

Landslides In Japan

Landslides in Japan

On Sept. 6, 2018, shortly after the remnants of Typhoon Jebi drenched southern Hokkaido, a powerful earthquake rattled the Japanese island. The 6.6-magnitude quake shook the surface enough to unleash hundreds of landslides.

The Landsat 8 satellite acquired imagery of the widespread damage. An image acquired on Sept. 15, 2018, shows mud and debris in a hilly area east of Abira. For comparison, the previous image shows the same area on July 26, 2017.

Read more about this

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

3 years ago

Our Galaxy is Caught Up in a Giant Cosmic Cobweb! 🕸️

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

If we could zoom waaaay out, we would see that galaxies and galaxy clusters make up large, fuzzy threads, like the strands of a giant cobweb. But we'll work our way out to that. First let's start at home and look at our planet's different cosmic communities.

Our home star system

Earth is one of eight planets — Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune — that orbit the Sun. But our solar system is more than just planets; it also has a lot of smaller objects.

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

An asteroid belt circles the Sun between Mars and Jupiter. Beyond Neptune is a doughnut-shaped region of icy objects called the Kuiper Belt. This is where dwarf planets like Pluto and Makemake are found and is likely the source of short-period comets (like Haley’s comet), which orbit the Sun in less than 200 years.

Scientists think that even farther out lies the Oort Cloud, also a likely source of comets. This most distant region of our solar system is a giant spherical shell storing additional icy space debris the size of mountains, or larger! The outer edge of the Oort Cloud extends to about 1.5 light-years from the Sun — that’s the distance light travels in a year and a half (over 9 trillion miles).

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

Sometimes asteroids or comets get ejected from these regions and end up sharing an orbit with planets like Jupiter or even crossing Earth’s orbit. There are even interstellar objects that have entered the inner solar system from even farther than the Oort Cloud, perhaps coming all the way from another star!

Our home galaxy

Let's zoom out to look at the whole Milky Way galaxy, which contains more than 100 billion stars. Many are found in the galaxy’s disk — the pancake-shaped part of a spiral galaxy where the spiral arms lie. The brightest and most massive stars are found in the spiral arms, close to their birth places. Dimmer, less massive stars can be found sprinkled throughout the disk. Also found throughout the spiral arms are dense clouds of gas and dust called nebulae. The Sun lies in a small spiral arm called the Orion Spur.

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

The Milky Way’s disk is embedded in a spherical “halo” about 120,000 light-years across. The halo is dotted with globular clusters of old stars and filled with dark matter. Dark matter doesn’t emit enough light for us to directly detect it, but we know it’s there because without its mass our galaxy doesn’t have enough gravity to hold together!

Our galaxy also has several orbiting companion galaxies ranging from about 25,000 to 1.4 million light-years away. The best known of these are the Large and Small Magellanic Clouds, which are visible to the unaided eye from Earth’s Southern Hemisphere.

Our galactic neighborhood

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

The Milky Way and Andromeda, our nearest neighboring spiral galaxy, are just two members of a small group of galaxies called the Local Group. They and the other members of the group, 50 to 80 smaller galaxies, spread across about 10 million light-years.

The Local Group lies at the outskirts of an even larger structure. It is just one of at least 100 groups and clusters of galaxies that make up the Virgo Supercluster. This cluster of clusters spans about 110 million light-years!

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

Galaxies aren’t the only thing found in a galaxy cluster, though. We also find hot gas, as shown above in the bright X-ray light (in pink) that surrounds the galaxies (in optical light) of cluster Abell 1413, which is a picturesque member of a different supercluster. Plus, there is dark matter throughout the cluster that is only detectable through its gravitational interactions with other objects.

The Cosmic Web

The Virgo Supercluster is just one of many, many other groups of galaxies. But the universe’s structure is more than just galaxies, clusters, and the stuff contained within them.

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

For more than two decades, astronomers have been mapping out the locations of galaxies, revealing a filamentary, web-like structure. This large-scale backbone of the cosmos consists of dark matter laced with gas. Galaxies and clusters form along this structure, and there are large voids in between.

The scientific visualizations of this “cosmic web” look a little like a spider web, but that would be one colossal spider! <shudder>

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

And there you have the different communities that define Earth’s place in the universe. Our tiny planet is a small speck on a crumb of that giant cosmic web!

Want to learn even more about the structures in the universe? Check out our Cosmic Distance Scale!

Make sure to follow us on Tumblr for your regular dose of space.


Tags
1 year ago
In this multiwavelength image, the central object resembles a semi-transparent, spinning toy top in shades of purple and magenta against a black background. The top-like structure appears to be slightly falling toward the right side of the image. At its center is a bright spot. This is the pulsar that powers the nebula. A stream of material is spewing forth from the pulsar in a downward direction, constituting what would be the part of a top that touches a surface while it is spinning. Wispy purple light accents regions surrounding the object. This image combines data from NASA's Chandra, Hubble, and Spitzer telescopes. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Navigating Deep Space by Starlight

On August 6, 1967, astrophysicist Jocelyn Bell Burnell noticed a blip in her radio telescope data. And then another. Eventually, Bell Burnell figured out that these blips, or pulses, were not from people or machines.

This photograph shows astrophysicist Jocelyn Bell Burnell smiling into a camera. She is wearing glasses, a pink collared shirt, and a black cardigan. She is holding a yellow pencil above a piece of paper with a red line across it. There is a tan lampshade and several books in the background. The image is watermarked “Copyright: Robin Scagell/Galaxy Picture Library.”

The blips were constant. There was something in space that was pulsing in a regular pattern, and Bell Burnell figured out that it was a pulsar: a rapidly spinning neutron star emitting beams of light. Neutron stars are superdense objects created when a massive star dies. Not only are they dense, but neutron stars can also spin really fast! Every star we observe spins, and due to a property called angular momentum, as a collapsing star gets smaller and denser, it spins faster. It’s like how ice skaters spin faster as they bring their arms closer to their bodies and make the space that they take up smaller.

This animation depicts a distant pulsar blinking amidst a dark sky speckled with colorful stars and other objects. The pulsar is at the center of the image, glowing purple, varying in brightness and intensity in a pulsating pattern. As the camera pulls back, we see more surrounding objects, but the pulsar continues to blink. The image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center

The pulses of light coming from these whirling stars are like the beacons spinning at the tops of lighthouses that help sailors safely approach the shore. As the pulsar spins, beams of radio waves (and other types of light) are swept out into the universe with each turn. The light appears and disappears from our view each time the star rotates.

A small neutron star spins at the center of this animation. Two purple beams of light sweep around the star-filled sky, emanating from two spots on the surface of the neutron star, and one beam crosses the viewer’s line of sight with a bright flash. The image is watermarked “Artist’s concept.” Credit: NASA's Goddard Space Flight Center.

After decades of studying pulsars, astronomers wondered—could they serve as cosmic beacons to help future space explorers navigate the universe? To see if it could work, scientists needed to do some testing!

First, it was important to gather more data. NASA’s NICER, or Neutron star Interior Composition Explorer, is a telescope that was installed aboard the International Space Station in 2017. Its goal is to find out things about neutron stars like their sizes and densities, using an array of 56 special X-ray concentrators and sensitive detectors to capture and measure pulsars’ light.

This time-lapse of our Neutron star Interior Composition Explorer (NICER) shows how it scans the skies to study pulsars and other X-ray sources from its perch aboard the International Space Station. NICER is near the center of the image, a white box mounted on a platform with a shiny panel on one side and dozens of cylindrical mirrors on the opposite side. Around it are other silver and white instruments and scaffolding. NICER swivels and pans to track objects, and some other objects nearby move as well. The station’s giant solar panels twist and turn in the background. Movement in the sequence, which represents a little more than one 90-minute orbit, is sped up by 100 times. Credit: NASA.

But how can we use these X-ray pulses as navigational tools? Enter SEXTANT, or Station Explorer for X-ray Timing and Navigation Technology. If NICER was your phone, SEXTANT would be like an app on it.  

During the first few years of NICER’s observations, SEXTANT created an on-board navigation system using NICER’s pulsar data. It worked by measuring the consistent timing between each pulsar’s pulses to map a set of cosmic beacons.

This photo shows the NICER payload on the International Space Station. Against a black background, tall rectangular solar panels that appear as a golden mesh rise from the bottom of the photo, passing through its middle area. In front of that are a variety of gray and white shapes that make up instruments and the structure of the space station near NICER. Standing above from them, attached to a silver pole, is the rectangular box of the NICER telescope, which is pointing its concentrators up and to the right. Credit: NASA.

When calculating position or location, extremely accurate timekeeping is essential. We usually rely on atomic clocks, which use the predictable fluctuations of atoms to tick away the seconds. These atomic clocks can be located on the ground or in space, like the ones on GPS satellites. However, our GPS system only works on or close to Earth, and onboard atomic clocks can be expensive and heavy. Using pulsar observations instead could give us free and reliable “clocks” for navigation. During its experiment, SEXTANT was able to successfully determine the space station’s orbital position!

A photo of the International Space Station as seen from above. The left and right sides of the image are framed by the station's long, rectangular solar panels, with a complex array of modules and hardware in the middle. The background is taken up fully by the surface of the Earth; lakes, snow-capped mountains, and a large body of water are faintly visible beneath white clouds. Credit: NASA

We can calculate distances using the time taken for a signal to travel between two objects to determine a spacecraft’s approximate location relative to those objects. However, we would need to observe more pulsars to pinpoint a more exact location of a spacecraft. As SEXTANT gathered signals from multiple pulsars, it could more accurately derive its position in space.

This animation shows how triangulating the distances to multiple pulsars could help future space explorers determine their location. In the first sequence, the location of a spaceship is shown in a blue circle in the center of the image against a dark space background. Three pulsars, shown as spinning beams of light, appear around the location. They are circled in green and then connected with dotted lines. Text on screen reads “NICER data are also used in SEXTANT, an on-board demonstration of pulsar-based navigation.” The view switches to the inside of a futuristic spacecraft, looking through the windshield at the pulsars. An illuminated control panel glows in blues and purples. On-screen text reads “This GPS-like technology may revolutionize deep space navigation through the solar system and beyond.” Credit: NASA’s Johnson Space Center

So, imagine you are an astronaut on a lengthy journey to the outer solar system. You could use the technology developed by SEXTANT to help plot your course. Since pulsars are reliable and consistent in their spins, you wouldn’t need Wi-Fi or cell service to figure out where you were in relation to your destination. The pulsar-based navigation data could even help you figure out your ETA!

NASA’s Space Launch System (SLS) rocket carrying the Orion spacecraft launched on the Artemis I flight test. With Artemis I, NASA sets the stage for human exploration into deep space, where astronauts will build and begin testing the systems near the Moon needed for lunar surface missions and exploration to other destinations farther from Earth. This image shows a SLS rocket against a dark, evening sky and clouds of smoke coming out from the launch pad. This is all reflected on the water in the foreground of the photo. Credit: NASA/Bill Ingalls

None of these missions or experiments would be possible without Jocelyn Bell Burnell’s keen eye for an odd spot in her radio data decades ago, which set the stage for the idea to use spinning neutron stars as a celestial GPS. Her contribution to the field of astrophysics laid the groundwork for research benefitting the people of the future, who yearn to sail amongst the stars.  

Keep up with the latest NICER news by following NASA Universe on X and Facebook and check out the mission’s website. For more on space navigation, follow @NASASCaN on X or visit NASA’s Space Communications and Navigation website.  

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Living and Working Aboard Station

 Join us on Facebook Live for a conversation with astronaut Kate Rubins and the director of the National Institutes for Health on Tuesday, October 18 at 11:15 a.m. ET.

Astronaut Kate Rubins has conducted out of this world research aboard Earth’s only orbiting laboratory. During her time aboard the International Space Station, she became the first person to sequence DNA in space. On Tuesday, she’ll be live on Facebook with National Institute of Health director Francis Collins, who led the effort to map the human genome. You can submit questions for Kate using the hashtag #SpaceChat on Twitter, or during the live event. Here’s a primer on the science this PhD astronaut has been conducting to help inspire your questions: 

image

Kate has a background in genomics (a branch of molecular genetics that deals with the study of genomes,specifically the identification and sequencing of their constituent genes and the application of this knowledge in medicine, pharmacy,agriculture, and other fields). When she began her tenure on the station, zero base pairs of DNA had been sequenced in space. Within just a few weeks, she and the Biomolecule Sequencer team had sequenced their one billionth base of DNA aboard the orbital platform.

“I [have a] genomics background, [so] I get really excited about that kind of stuff,” Rubins said in a downlink shortly after reaching the one billion base pairs sequenced goal.

Learn more about this achievement:

+First DNA Sequencing in Space a Game Changer

+Science in Short: One Billion Base Pairs Sequenced

Why is DNA Sequencing in Space a Big Deal?

A space-based DNA sequencer could identify microbes, diagnose diseases and understand crew member health, and potentially help detect DNA-based life elsewhere in the solar system.

+Why Sequencing DNA in Space is a Big Deal

https://youtu.be/1N0qm8HcFRI 

Miss the Reddit AMA on the subject? Here’s a transcript:

+NASA AMA: We just sequenced DNA in space for the first time. Ask us anything! 

NASA and Its Partnerships

image

We’re not doing this alone. Just like the DNA sequencing was a collaborative project with industry, so is the Eli Lilly Hard to Wet Surfaces investigation, which is a partnership between CASIS and Eli Lilly Co. In this experiment aboard the station, astronauts will study how certain materials used in the pharmaceutical industry dissolve in water while in microgravity. Results from this investigation could help improve the design of tablets that dissolve in the body to deliver drugs, thereby improving drug design for medicines used in space and on Earth. Learn more about what we and our partners are doing:

+Eli Lilly Hard to Wet Surfaces – been happening the last week and a half or so

Researchers to Test How Solids Dissolve in Space to Design Better Tablets and Pills on Earth

With our colleagues at the Stanford University School of Medicine, we’re also investigating the effects of spaceflight on stem cell-derived heart cells, specifically how heart muscle tissue, contracts, grows and changes  in microgravity and how those changes vary between subjects. Understanding how heart muscle cells change in space improves efforts for studying disease, screening drugs and conducting cell replacement therapy for future space missions. Learn more:

+Heart Cells

+Weekly Recap From the Expedition Lead Scientist for Aug. 18, 2016 

It’s Not Just Medicine

image

Kate and her crew mates have also worked on the combustion experiments.

Kate has also worked on the Bigelow Expandable Activity Module (BEAM), an experimental expandable capsule that docks with the station. As we work on our Journey to Mars, future space habitats  are a necessity. BEAM, designed for Mars or other destinations, is a lightweight and relatively simple to construct solution. Kate has recently examined BEAM, currently attached to the station, to take measurements and install sensors.

image

Kate recently performed a harvest of the Plant RNA Regulation experiment, by removing seed cassettes and stowing them in cold stowage.

image

The Plant RNA Regulation investigation studies the first steps of gene expression involved in development of roots and shoots. Scientists expect to find new molecules that play a role in how plants adapt and respond to the microgravity environment of space, which provides new insight into growing plants for food and oxygen supplies on long-duration missions. Read more about the experiment:

+Plant RNA Harvest

NASA Astronaut Kate Rubins is participating in several investigations examining changes in her body as a result of living in space. Some of these changes are similar to issues experienced by our elderly on Earth; for example, bone loss (osteoporosis), cardiovascular deconditioning, immune dysfunction, and muscle atrophy. Understanding these changes and how to prevent them in astronauts off the Earth may help improve health for all of us on the Earth. In additional, the crew aboard station is also working on more generalized studies of aging.

+ Study of the effects of aging on C. elegans, a model organism for a range of biological studies.


Tags
9 years ago

We’re honored that New Horizon’s image of Pluto was recognized as one of 2015’s top 10 photos by @timemagazine. 

TIME’s Top 10 Photos Of 2015. ⠀⠀⠀⠀⠀⠀⠀⠀⠀ Each Photograph, Carefully Culled From Thousands

TIME’s Top 10 Photos of 2015. ⠀⠀⠀⠀⠀⠀⠀⠀⠀ Each photograph, carefully culled from thousands and presented here unranked, reflects a unique and powerful point of view that represents the best of photojournalism this year. ⠀⠀⠀⠀⠀⠀⠀⠀⠀ 2015 gave us the ever picture of Pluto, made by @NASA’s New Horizons spacecraft. The high-resolution color image was taken more than nine years after the two cameras that shot it left Earth in the fastest spacecraft ever launched into space. “This is really the completion of a 50-year quest to explore all of the planets in our solar system,” says photographer Alan Stern (@alanstern). “NASA began under President Kennedy and finished under President Obama. I believe that 100 years from now, this image will be an icon from the year 2015.” ⠀⠀⠀⠀⠀⠀⠀⠀⠀ Read more from each #photographer at time.lightbox.com. ⠀⠀⠀⠀⠀⠀⠀⠀⠀ #topten #bestof2015 #pluto #space http://ift.tt/1O7fKGW

9 years ago

Return to Venus

image

Japan's Akatsuki orbiter is making a second attempt to enter orbit around Venus today, Dec. 7. A malfunction in 2010 caused the spacecraft to miss its first orbit opportunity. The mission team came up with a plan to try again this week. In honor of Akatsuki, here are a few things you need to know about Venus, physics and other missions to explore our solar system's second planet:

1. Venus Climate Orbiter

image

The down-to-business names for Akatsuki - which means "Dawn" or "Daybreak" in Japanese - are Venus Climate Orbiter and Planet-C. Akatsuki is Japan's third deep space mission. At Venus, the orbiter will study Venusian meteorology. JAXA defines the mission's goals as:

Observing Venus as a whole to understand its perpetual cloud layer, deep atmosphere and surface

Close observations of cloud structures and convection

Searching for signs of lightning and air glow

2. Exploring Venus

image

Venus played a key role in early deep space exploration. Our Mariner 2 was the first successful interplanetary mission in 1962. And several Soviet spacecraft have made the tough descent and landing on Venus' hellish surface. HERE is a list of other missions to Venus.

3. All About Venus

image

Similar in structure and size to Earth, Venus' thick, toxic atmosphere traps heat in a runaway greenhouse effect. A permanent layer of clouds traps heat, creating surface temperatures hot enough to melt lead. Glimpses below the clouds reveal volcanoes and deformed mountains. Venus spins slowly in the opposite direction of most planets.

4. Sizing Up the Solar System

image

Venus also played a key role in determining the distance between Earth and the sun - creating the Astronomical Unit, the basic measurement we use to define our place in the cosmos. Many 18th century explorers, including the legendary James Cook, undertook perilous journeys to define the astronomical unit by watching Venus cross the face of the sun.

5. It’s Just a Phase

image

Like the moon, Venus has phases. It can be full when Venus is on the far side of the sun, new when Venus is between the sun and Earth and a crescent at other points in between. Take a look at Galileo Galilei’s sketches of the phases of Venus HERE.

Follow Along:

As mentioned, Japan's Akatsuki orbiter is making a second attempt to enter orbit around Venus today, Dec. 7. Follow along HERE for updates on this attempt. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
Go Green — In Space!

Go green — in space!

Good things come in mini-fridge-sized packages. This small spacecraft is our Green Propellant Infusion Mission and will test a low toxicity propellant. This technology could lengthen mission durations by using less propellant.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Finalists for a Future Mission to Explore the Solar System

We’ve selected two finalists for a robotic mission that is planned to launch in the mid-2020s! Following a competitive peer review process, these two concepts were chosen from 12 proposals that were submitted in April under a New Frontiers program announcement opportunity.

What are they?

In no particular order…

CAESAR

image

CAESAR, or the Comet Astrobiology Exploration Sample Return mission seeks to return a sample from 67P/Churyumov-Gerasimenko – the comet that was successfully explored by the European Space Agency’s Rosetta spacecraft – to determine its origin and history.

image

This mission would acquire a sample from the nucleus of comet Churyumov-Gerasimenko and return it safely to Earth. 

image

Comets are made up of materials from ancient stars, interstellar clouds and the birth of our solar system, so the CAESAR sample could reveal how these materials contributed to the early Earth, including the origins of the Earth's oceans, and of life.

Dragonfly

A drone-like rotorcraft would be sent to explore the prebiotic chemistry and habitability of dozens of sites on Saturn’s moon Titan – one of the so-called ocean worlds in our solar system.

image

Unique among these Ocean Worlds, Titan has a surface rich in organic compounds and diverse environments, including those where carbon and nitrogen have interacted with water and energy.

image

Dragonfly would be a dual-quadcopter lander that would take advantage of the environment on Titan to fly to multiple locations, some hundreds of miles apart, to sample materials and determine surface composition to investigate Titan's organic chemistry and habitability, monitor atmospheric and surface conditions, image landforms to investigate geological processes, and perform seismic studies.

What’s Next?

The CAESAR and Dragonfly missions will receive funding through the end of 2018 to further develop and mature the concepts. It is planned that from these, one investigation will be chosen in the spring of 2019 to continue into subsequent mission phases.

image

That mission would be the fourth mission in the New Frontiers portfolio, which conducts principal investigator (PI)-led planetary science missions under a development cost cap of approximately $850 million. Its predecessors are the New Horizons mission to Pluto and a Kuiper Belt object, the Juno mission to Jupiter and OSIRIS-REx, which will rendezvous with and return a sample of the asteroid Bennu. 

Key Technologies

We also announced that two mission concepts were chosen to receive technology development funds to prepare them for future mission opportunities.

image

The Enceladus Life Signatures and Habitability (ELSAH) mission concept will receive funds to enable life detection measurements by developing cost-effective techniques to limit spacecraft contamination on cost-capped missions.

image

The Venus In situ Composition Investigations (VICI) mission concept will further develop the VEMCam instrument to operate under harsh conditions on Venus. The instrument uses lasers on a lander to measure the mineralogy and elemental composition of rocks on the surface of Venus.

The call for these mission concepts occurred in April and was limited to six mission themes: comet surface sample return, lunar south pole-Aitken Basin sample return, ocean worlds, Saturn probe, Trojan asteroid tour and rendezvous and Venus insitu explorer.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
3 years ago

Lasers Bring Internet Speeds to Space

Pew. Pew. Lasers in space!

Iconic movie franchises like Star Wars and Star Trek feature futuristic laser technologies, but space lasers aren’t limited to the realm of science fiction. In fact, laser communications technologies are changing the way missions transmit their data. The Laser Communications Relay Demonstration (LCRD) blasts into space this weekend, demonstrating the unique – and totally awesome – capabilities of laser communications systems.

image

Currently, NASA missions rely on radio frequency to send data to Earth. While radio has served the agency well since the earliest days of spaceflight, there are significant benefits to laser systems. Just as the internet has gone from dial-up to high-speed connections, lasers communications’ higher frequency allows missions to send much more information per second than radio systems. With laser communications, it would only take nine days to transmit a complete map of Mars back to Earth, compared to nine weeks with radio frequency systems.

image

LCRD will demonstrate these enhanced capabilities from 22,000 miles above Earth’s surface. And although the mission uses lasers, these lasers are not visible to the human eye. Once in orbit, the mission will perform experiments using two telescopes on Earth that will relay data through the spacecraft from one site to the other over an optical communications link. These experiments will help NASA and the aerospace community understand the operational challenges of using lasers to communicate to and from space.

image

On Earth, there are ground stations telescopes that will capture LCRD’s laser signal and send the data to the mission operations center in New Mexico. The two ground stations are located on Haleakalā, Hawaii and Table Mountain, California. These picturesque locations weren’t chosen because they’re beautiful, but rather for their mostly clear skies. Clouds – and other atmospheric disturbances – can disrupt laser signals. However, when those locations do get cloudy, we’ve developed corrective technologies to ensure we receive and successfully decode signals from LCRD.

image

This demonstration will help NASA, researchers, and space companies learn more about potential future applications for laser communications technologies. In the next few years, NASA will launch additional laser missions to the Moon on Artemis II and to the asteroid belt, even deeper into space. These missions will give us insight on the use of laser communications further in space than ever before.

image

Ultimately, laser systems will allow us to glean more information from space. This means more galaxy pics, videos of deep space phenomena, and live, 4K videos from astronauts living and working in space.

Laser communications = more data in less time = more discoveries.

If laser communications interests you, check out our Space Communications and Navigation (SCaN) Internship Project. This program provides high school, undergrad, graduate, and even Ph.D. candidates with internship opportunities in space communications areas – like laser comm.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
10 months ago

ALT: This video shows blades of grass moving in the wind on a beautiful day at NASA’s Michoud Assembly Facility in New Orleans. In the background, we see the 212-foot-core stage for the powerful SLS (Space Launch System) rocket used for Artemis I. The camera ascends, revealing the core stage next to a shimmering body of water as technicians lead it towards NASA’s Pegasus barge. Credit: NASA

The SLS (Space Launch System) Core Stage by Numbers

Technicians with NASA and SLS core stage lead contractor Boeing, along with RS-25 engines lead contractor Aerojet Rocketdyne, an L3Harris Technologies company, are nearing a major milestone for the Artemis II mission. The SLS (Space Launch System) rocket’s core stage for Artemis II is fully assembled and will soon be shipped via barge from NASA’s Michoud Assembly Facility in New Orleans to the agency’s Kennedy Space Center in Florida. Once there, it will be prepped for stacking and launch activities.

Get to know the core stage – by the numbers.

A vibrant blue sky creates a beautiful backdrop for the colossal orange core stage of NASA's Artemis I SLS rocket. Sprawled horizontally against the industrial backdrop of NASA’s Michoud Assembly Facility. Technicians in bright yellow vests are seen next to the core stage and add a human touch to the scale of this monumental hardware. Credit: NASA

Standing 212 feet tall and measuring 27.6 feet in diameter, the SLS core stage is the largest rocket stage NASA has ever built. Due to its size, the hardware must be shipped aboard NASA’s Pegasus barge.

A montage of three photos captures two men strolling across NASA's Pegasus barge at night preparing to set sail before shifting to two images of the barge on an journey down the mighty Mississippi River from varied perspectives.
Credit: NASA/Steve Seipel and George Shelton

900 miles

Once loaded, the barge – which was updated to accommodate the giant core stage -- will travel 900 miles to Florida across inland and ocean waterways. Once at Kennedy, teams with our Exploration Ground Systems team will complete checkouts for the core stage prior to stacking preparations.

NASA astronauts Christina Koch and Reid Wiseman immerse themselves in NASA's Systems Integration Lab at Marshall Space Flight Center in Huntsville, Alabama,, surrounded by a web of crucial cables, wires, and avionics systems that act as the 'brains' of the SLS rocket. Engrossed, they listen intently as a NASA engineer unveils the intricate workings before them. Credit: NASA/Sam Lott

18 Miles + 500 Sensors

As impressive as the core stage is on the outside, it’s also incredible on the inside. The “brains” of the rocket consist of three flight computers and special avionics systems that tell the rocket what to do. This is linked to 18 miles of cabling and more than 500 sensors and systems to help feed fuel and steer the four RS-25 engines.

This GIF shows a panoramic sweep showing several RS-25 engines, their vibrant red and silver hues shining under the lights of NASA’s Michoud Assembly Facility, as they await installation on the SLS core stage. Credit: NASA

8.8 million

Speaking of engines… Our SLS Moon rocket generates approximately 8.8 million pounds of thrust at launch. Two million pounds come from the four powerful RS-25 engines at the base of the core stage, while each of the two solid rocket boosters produces a maximum thrust of 3.6 million pounds. Together, the engines and boosters will help launch a crew of four Artemis astronauts inside NASA’s Orion spacecraft beyond Earth orbit to venture around the Moon.

ALT: Two large, white spheres used to hold the liquid propellants for the SLS (Space Launch System) are seen at launch complex 39B at NASA’s Kennedy Space Center. These white tanks stand tall and vibrant amongst a blue sky and green grass. Credit: NASA/Chad Siwik

733,000 Gallons

Achieving the powerful thrust required at launch calls for a large amount of fuel - 733,000 gallons, to be precise. The stage has two huge propellant tanks that hold the super-cooled liquid hydrogen and liquid oxygen that make the rocket “go.” A new liquid hydrogen storage sphere has recently been built at Kennedy, which can store 1.25 million gallons of liquid hydrogen.

We see from left to right NASA astronauts Victor Glover, Christina Koch, Reid Wiseman, and Canadian Space Agency’s Jeremy Hansen stand in their vibrant orange flight suits, clutching their helmets. Against a cosmic backdrop of deep black, a mesmerizing white starburst effect emanates behind them, intensifying the moment as the video gradually draws them closer, evoking a sense of awe and anticipation. Credit: NASA

Four

The number four doesn’t just apply to the RS-25 engines. It’s also the number of astronauts who will fly inside our Orion spacecraft atop our SLS rocket for the first crewed Artemis mission. When NASA astronauts Reid Wiseman, Christina Koch, and Victor Glover along with CSA astronaut Jeremy Hansen launch, they will be the first astronauts returning to the Moon in more than 50 years.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago

4 people are living in an isolated habitat for 30 days. Why? Science!

This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won't go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!

The only people they will talk with regularly are mission control and each other.

image

The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.

What will they be doing?

Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it. 

A few other details:

The crew follows a timeline that is similar to one used for the ISS crew.

They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.  

They will be growing and taking care of plants and brine shrimp, which they will analyze and document.

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission. 

image

Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

image

Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.

Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.

image

In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.

UPDATE:

Mission success! After a simulated mission to an asteroid, the crew “splashed down” around 10:30 p.m. EST on Wednesday, Feb. 24 and exited the habitat for the first time in 30 days.

Want a full, 360 degree look at HERA? Check out and explore the inside of the habitat.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • oikawas-slut
    oikawas-slut liked this · 4 years ago
  • fliegwegwenndukannst
    fliegwegwenndukannst liked this · 4 years ago
  • reddog1984
    reddog1984 reblogged this · 5 years ago
  • killarosi
    killarosi liked this · 5 years ago
  • gaminganimeavenger
    gaminganimeavenger liked this · 5 years ago
  • miss-antropic
    miss-antropic liked this · 5 years ago
  • weirdo-with-a-nametag
    weirdo-with-a-nametag liked this · 6 years ago
  • dhruvthestar26
    dhruvthestar26 liked this · 6 years ago
  • shir0ch4n
    shir0ch4n liked this · 6 years ago
  • strawberry-fly
    strawberry-fly liked this · 6 years ago
  • blue8cat
    blue8cat liked this · 6 years ago
  • amnsc
    amnsc liked this · 6 years ago
  • kaleka0
    kaleka0 liked this · 6 years ago
  • filthycasuowl-blog
    filthycasuowl-blog liked this · 6 years ago
  • theironsandwich
    theironsandwich liked this · 6 years ago
  • kunoichihatakebranchaccount
    kunoichihatakebranchaccount liked this · 6 years ago
  • littlebitofeverything
    littlebitofeverything liked this · 6 years ago
  • marschattpanosh
    marschattpanosh reblogged this · 6 years ago
  • marschattpanosh
    marschattpanosh liked this · 6 years ago
  • stonestridernerd
    stonestridernerd reblogged this · 6 years ago
  • sleepygrumpylumpy
    sleepygrumpylumpy reblogged this · 6 years ago
  • nose-god
    nose-god liked this · 6 years ago
  • terrablaze514
    terrablaze514 reblogged this · 6 years ago
  • terrylhills
    terrylhills liked this · 6 years ago
  • spaceview2k18-blog
    spaceview2k18-blog liked this · 6 years ago
  • liorzh
    liorzh reblogged this · 6 years ago
  • wachsurfer2018
    wachsurfer2018 liked this · 6 years ago
  • rnolina
    rnolina reblogged this · 6 years ago
  • gentianablue
    gentianablue reblogged this · 6 years ago
  • phylophe
    phylophe reblogged this · 6 years ago
  • crimson-creature
    crimson-creature reblogged this · 6 years ago
  • woundeadshadow
    woundeadshadow reblogged this · 6 years ago
  • woundeadshadow
    woundeadshadow liked this · 6 years ago
  • gentianablue
    gentianablue liked this · 6 years ago
  • awesomesauceisbestsauce
    awesomesauceisbestsauce liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags